VARIO DO 16/24

I/O Extension Module With 16 Digital Outputs

User Manual

This data sheet is only valid in association with the documents of the used fieldbus coupler

Function

This terminal is designed for use within an Inline station. It is used to output digital signals.

Features

- Connections for 16 digital actuators
- Connection of 2- and 3-wire actuators
- Nominal current of each output: 0.5 A
- Total current of the terminal: 8 A
- Short-circuit and overload protected outputs
- Diagnostic and status indicators

Figure $1 \quad$ VARIO DO 16/24 terminal with the connectors plugged in

All modules will be delivered including connectors and labeling fields

Figure 2 VARIO DO 16/24 terminal with an appropriate connector

Local Diagnostic and Status Indicators

Des.	Color	Meaning
\mathbf{D}	Green	Bus diagnostics
$\mathbf{1 , 2 ,}$	Yellow	Status indication of the
$\mathbf{3 , 4}$		outputs

Terminal Assignment for Each Connector

Terminal Point	Assignment
$1.1,2.1$	Signal output (OUT)
$1.2,2.2$	Ground contact (GND) for 2- and 3-wire-termination
$\mathbf{1 . 3 , 2 . 3}$	FE (functional earth ground) connection for 3-wire-termination
$\mathbf{1 . 4 , 2 . 4}$	Signal output (OUT)
$1.5,2.5$	Ground contact (GND) for 2- and 3-wire-termination
$1.6,2.6$	FE connection for 3-wire- termination

Internal Circuit Diagram

Figure 3 Internal wiring of the terminal points
Key:

| orc | INTERBUS protocol chip
 (bus logic including voltage
 conditioning) | Digital output |
| :--- | :--- | :--- | :--- |

Connection Example

\triangle
When connecting the actuators, observe the assignment of the terminal points to the fieldbus output data (see page 5).

Figure 4 Typical actuator connections 3-wire termination
The numbers shown above the terminal indicate the mounting locations of the connectors.

Programming Data

ID code	$\mathrm{BD}_{\text {hex }}\left(189_{\mathrm{dec}}\right)$
Length code	$01_{\text {hex }}$
Process data channel	16 bits
Input address area	0 bytes
Output address area	2 bytes
Parameter channel (PCP)	0 bytes
Register length (bus)	2 bytes

Process Data

The IN process data is not available.

Assignment of the Terminal Points to the OUT Process Data

(Byte.bit) view	Byte	Byte 0								Byte 1							
	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Terminal	Slot	4				3				2				1			
	Terminal point (signal)	2.4	1.4	2.1	1.1	2.4	1.4	2.1	1.1	2.4	1.4	2.1	1.1	2.4	1.4	2.1	1.1
	Terminal point (GND)	2.5	1.5	2.2	1.2	2.5	1.5	2.2	1.2	2.5	1.5	2.2	1.2	2.5	1.5	2.2	1.2
	Terminal point (FE)	2.6	1.6	2.3	1.3	2.6	1.6	2.3	1.3	2.6	1.6	2.3	1.3	2.6	1.6	2.3	1.3
Status indication	Slot	4				3				2				1			
	LED	4	3	2	1	4	3	2	1	4	3	2	1	4	3	2	1

Technical Data

General Data	
Housing dimensions (width \times height x depth)	$48.8 \mathrm{~mm} \times 120 \mathrm{~mm} \times 71.5 \mathrm{~mm}$ $(1.921 \mathrm{in} . \times 4.724 \mathrm{in} . \times 2.815 \mathrm{in})$.
Weight	130 g (without connector)
Operating mode	Process data operation with 16 bits
Connection type of the actuators	$2-$ and 3 -wire technology
Permissible temperature (operation)	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
Permissible temperature (storage/transport)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Permissible humidity (operation) Ranging from $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$ appropriate measures against increased humidity $(>85 \%)$ must be taken.	

Permissible humidity (storage/transport)	75% on average, 85% occasionally
For a short period, slight condensation may appear on the housing if, for example, the terminal is brought into a closed room from a vehicle.	
Permissible air pressure (operation)	80 kPa to 106 kPa (up to 2000 m [6562 ft.] above sea level)
Permissible air pressure (storage/transport)	70 kPa to 106 kPa (up to 3000 m [9843 ft.] above sea level)
Degree of protection	IP 20 according to IEC 60529
Class of protection	Class 3 according to VDE 0106, IEC 60536

Interface	Through data routing
local bus interface	

Power Consumption	7.5 V
Communications power	90 mA, maximum
Current consumption from the local bus	0.675 W, maximum
Power consumption from the local bus	$24 \mathrm{~V} \mathrm{DC} \mathrm{(nominal} \mathrm{value)}$
Segment supply voltage U_{S}	$8 \mathrm{~A}(16 \times 0.5 \mathrm{~A})$, maximum
Nominal current consumption of U_{S}	

Supply of the Module Electronics and I/O Through Bus Terminal/Power Terminal	
Connection method	Through potential routing

Digital Outputs	
Number	16
Nominal output voltage $U_{\text {OUT }}$	24 V DC
Differential voltage for $\mathrm{I}_{\text {nom }}$	$\leq 1 \mathrm{~V}$
Nominal current $\mathrm{I}_{\text {nom }}$ per channel	0.5 A
Tolerance of the nominal current	$+10 \%$
Total current	8 A
Protection	Short-circuit; overload

Nominal load

Ohmic	$48 \Omega / 12 \mathrm{~W}$
Lamp	12 W
Inductive	$12 \mathrm{VA}(1.2 \mathrm{H}, 50 \Omega)$

Signal delay: OFF to ON

- Ohmic nominal load
- Lamp nominal load
- Inductive nominal load

Signal delay: ON to OFF

- Ohmic nominal load
- Lamp nominal load
- Inductive nominal load
$500 \mu \mathrm{~s}$, typical
100 ms (with switching frequencies up to 8 Hz ; above this frequency the lamp load responds like an ohmic load), typical
$100 \mathrm{~ms}(1.2 \mathrm{H}, 50 \Omega$), typical

Digital Outputs (continued)

Switching frequency with

- Ohmic nominal load

300 Hz , maximum
This switching frequency is limited by the selected data rate, the number of bus devices, the bus structure, the software, and the control or computer system used.

- Lamp nominal load

8 Hz , maximum

-8
This switching frequency is limited by the selected data rate, the number of bus devices, the bus structure, the software, and the control or computer system used.

- Inductive nominal load	$0.5 \mathrm{~Hz}(1.2 \mathrm{H}, 50 \Omega)$, maximum
Overload response	Auto restart
Response time with ohmic overload (12Ω)	Approximately 3 s
Restart frequency at ohmic overload	Approximately 400 Hz
Restart frequency at lamp overload	Approximately 400 Hz
Response after inductive overload	Output can be destroyed
Response time after short-circuit	Approximately 3 s
Reverse voltage endurance against short pulses	Yes
Strength against permanently applied reverse voltages	Yes Maximum permissible current 2 A
Validity of output data after connection of 24 V power supply (power up)	5 ms, typical
Response upon US power down	The output follows the power supply without delay.
Limitation of the demagnetization voltage induced on circuit interruption	$-15 \mathrm{~V} \leq \mathrm{U}_{\text {demag }} \leq-45.8 \mathrm{~V}$ $\left(\mathrm{U}_{\text {demag }}=\right.$ demagnetization voltage)
Single maximum energy in free running	400 mJ, maximum
Protective circuit type	Integrated 45 V Zener diode in output chip

Digital Outputs (continued)	
Overcurrent shutdown	$300 \mu \mathrm{~A}$, maximum
Output current when switched off	2 V, maximum
Output voltage when switched off	25 mA, maximum
Output current with ground connection interrupted	100 mW at $1 \mathrm{k} \Omega$ load resistance, typical
Switching power with ground connection interrupted	1.5 A for 20 ms, maximum
Inrush current with lamp load	

Output Characteristic When Switched On (Typical)	
Output current (A)	Differential output voltage (V)
0	0
0.1	0.04
0.2	0.08
0.3	0.12
0.4	0.16
0.5	0.20

Power Dissipation

Formula to calculate the power dissipation of the electronics

$$
P_{\text {tot }}=0.19 \mathrm{~W}+\sum_{n=1}^{16}\left(0.10 \mathrm{~W}+\mathrm{I}_{\mathrm{Ln}}{ }^{2} \times 0.4 \Omega\right)
$$

With
$\begin{array}{ll}P_{\text {tot }} & \text { Total power dissipation of the terminal } \\ n & \text { Index of the number of set outputs } n=1 \text { to } 16\end{array}$
In Load current of the output n
Power dissipation of the housing $\mathbf{P}_{\mathrm{HOU}}$
2.7 W, maximum (within the permissible operating temperature)

Concurrent Channel Derating

Ambient temperature T_{U}	Maximum load current at $\mathbf{1 0 0 \%}$ simultaneity	Maximum load current at $\mathbf{7 5 \%}$ simultaneity
$-25^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right) \leq \mathrm{T}_{\mathrm{U}}<+40^{\circ} \mathrm{C}$ $\left(104^{\circ} \mathrm{F}\right)$	0.50 A	0.50 A
$+40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right) \leq \mathrm{T}_{\mathrm{U}}<+45^{\circ} \mathrm{C}$ $\left(113^{\circ} \mathrm{F}\right)$	0.45 A	0.50 A
$+45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right) \leq \mathrm{T}_{U}<+50^{\circ} \mathrm{C}$ $\left(122^{\circ} \mathrm{F}\right)$	0.40 A	0.50 A
$+50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)<\mathrm{T}_{\mathrm{U}} \leq+55^{\circ} \mathrm{C}$		
$\left(131^{\circ} \mathrm{F}\right)$		

With 100% simultaneity, a load current of 0.4 A for each channel is permissible up to $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ (ambient temperature range). Above $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ a load current of 0.35 A is permissible. If a maximum of twelve channels are operated in the permissible ambient temperature range at the same time (75% simultaneity, maximum), a load current of 0.5 A can be tapped.

Safety Devices	
Overload/short-circuit in segment circuit	Electronic; with four 4-channel drivers
Surge voltage	Protective elements of the power terminal; Protection up to 33 V DC
Polarity reversal of power supply	Protective elements of the power terminal; It is necessary to protect the power supply. The power supply unit should be able to supply 4- times (400\%) the nominal current of the fuse.
Reverse voltage	Integrated reverse voltage protection

Electrical Isolation	
To provide electrical isolation between the logic level and the I/O area it is necessary to supply the bus terminal and the digital output terminal using the bus terminal or a power terminal from separate power supply units. Interconnection of the 24 V power supplies is not allowed!	
Common potentials	
24 V main power, 24 V segment voltage, and GND have the same potential. FE is a separate potential area.	
Separate system potentials consisting of bus terminal/power terminal and I/O terminal	
- Test distance	- Test voltage
5 V supply incoming remote bus / 7.5 V supply (bus logic)	$500 \mathrm{~V} \mathrm{AC} 50 \mathrm{~Hz},, 1 \mathrm{~min}$
5 V supply outgoing remote bus / 7.5 V supply (bus logic)	500 V AC, $50 \mathrm{~Hz}, 1 \mathrm{~min}$
7.5 V supply (bus logic) / 24 V supply (I/O)	$500 \mathrm{~V} \mathrm{AC} 50 \mathrm{~Hz},, 1 \mathrm{~min}$
24 V supply (I/O) / functional earth ground	500 V AC, $50 \mathrm{~Hz}, 1 \mathrm{~min}$

Error Messages to the Higher-Level Control or Computer System	
Short-circuit/overload of an output	Yes
	An error message is generated when an output is shorted and switched on. Also, the diagnostic LED (D) flashes on the terminal at 2 Hz under these conditions.
Operating voltage out of range	No

Ordering Data

Description	Order Designation	Order No.
Terminal with 16 digital outputs with connectors and labeling fields	VARIO DO 16/24	KSVC-102-00251

PMA Prozess- und Maschinen-Automation GmbH
Miramstrasse 87
34123 Kassel
Germany
䉏 $+49-(0) 561505-1307$
$+49-(0) 561505-1710$
www.pma-online.de

