Digital indicator Digital 280-1

Explanation of symbols:

General information

General warning

MODBUS ${ }^{\circledR}$
is a registered trademark of the MODBUS-IDA Organization
BluePort ${ }^{\circledR}$ and BlueControl ${ }^{\circledR}$
are registered trademarks of PMA Prozeß- und Maschinen-Automation GmbH

© 2004-2005 PMA Prozeß- und Maschinen-Automation GmbH • Printed in Germany • All rights reserved • Without prior written consent, reprinting or photocopying of this document, entirely or in part, is prohibited.

This is a publication of
PMA Prozeß- und Maschinen Automation
P.O. Box 310229

D-34058 Kassel
Germany

Content

1. General 5
1.1 References 5
2. Commissioning the interface 6
2.1 Mounting hints 6
2.2 Electrical connections 6
2.2.1 RS 485 version (two-wire) 7
2.2.2 RS 422 version (four-wire - RS 485) 9
2.2.3 Cable installation 11
2.2.4 Screening 11
2.2.5 Terminating resistors 11
2.2.6 Installation notes 13
2.3 Bus settings 13
2.3.1 Bus address 13
2.3.2 Transmission parameters 13
2.4 System layout 15
2.4.1 Minimum configuration of a MODBUS installation 15
2.4.2 Maximum configuration of a MODBUS installation 15
2.4.3 Wiring inside buildings 16
3. Bus protocol 17
3.1 17
3.2 General message frame
3.2.1 CRC 18
3.2.2 End of frame detection 18
3.3 Transmission principles 18
3.4 Response delay (dELY) 18
3.5 Modem operation (C.dEL) 18
3.6 Function codes. 19
3.6.1 Reading several values 19
3.6.2 Writing a single value 20
3.7 Writing several values 21
3.8 Error record 22
3.8.1 Error codes 22
3.9 Diagnosis 23
3.9.1 Return transmission of the received message (0x00) 24
3.9.2 Restart of communication (terminates the Listen Only mode) (0x01) 24
3.9.3 Return transmission of the diagnosis register (0x02) 24
3.9.4 Change to the Listen Only mode (0x04) 24
3.9.5 Delete the counter and reset the diagnosis register ($0 \times 0 \mathrm{~A}$) 24
3.9.6 Return transmission of the message counter (OxOB) 25
3.9.7 Return transmission of the counter for faulty message transmissions 25
3.9.8 Return transmission of the counter for messages answered with error code25
3.9.9 Return transmission of the message counter for this slave 25
3.9.10 Return transmission of the counter for unanswered messages 25
3.9.11 Return transmission of the counter for messages answered with NAK (0×10)26
26
3.9.12 Return transmission of the counter for messages answered with Busy (0x11)
3.9.13 Return transmission of the parity error counter (0x40) 26
3.9.14 Return transmission of the framing error counter (0×41). 26
3.9.15 Return transmission of the counter for too long messages 26
4. MODBUS addresses, address areas, and address formats 27
4.1 Area definitions
4.2 Special values 27
4.3 Composition of the address tables 28
4.4 Internal data types 28
5. Index 29
6. Address tables 31

1 General

We thank you for purchasing a device from the BluePort ${ }^{\circledR}$ product range. This document describes the implementation and operation of the MODBUS interface used with the Digital indicator Dig 280-1 which will be called 'device' in the rest of this document.

Devices with a MODBUS interface permit the transmission of process data, parameters, and configuration data.
Electrical connections are made at the base of the device in the channel of the top-hat DIN rail. The serial communication interface provides a simple link to superordinate PLCs, visualization tools, etc.

An additional interface that is always fitted in the device's front panel is the BluePort® (PC) interface. This interface is not bussable, and serves for a direct connection with the BlueControl® software package that runs on a PC or laptop. Communication is done according to the master/slave principle. The device is always operated as a slave.

The most important characteristics and physical/electrical properties of the bus connection are:

- Network topology
linear bus, possible with bus termination at both ends (see below).
- Transmission media
screened and twisted 2-wire copper leads
- Lead lengths (without repeater)

A maximum lead length of 1000 m should not be exceeded.

- Transmission speeds

The following transmission speeds are supported:
2400 ... 38400 bits/s

- Physical interface

RS 485 with bus connections in the top-hat rail; connections made on site.

- Address range

1 ... 247
(32 devices in one segment. Expandable to 247 with repeaters.)

1.1 References

Further information on the MODBUS-Protokoll:

[1] MODBUS Specifications

- MODBUS application Protocol Specification V1,1
- MODBUS over serial line specification and implementation guide V1.1
- http://www.modbus.org

Further information on RS 485:

[2] ANSI/TIA/EIA-485-A

Additional documentation for Dig 280-1 devices:
[3] Digital indicator Dig 280-1

- Data sheet Dig 280-1 949873746813
- Operating instructions Dig 280-1 949904067311

2 Commissioning the interface

Instrument field bus connection is via the pins of connector B on the rear, via flat-pin connectors or via screw terminals dependent on version.
Construction of suitable cables must be done by the user.

2.1

Mounting hints

If possible, the place of installation should be exempt of vibration, aggressive media (e.g. acid, lye), liquid, dust or aerosol.

The unit may be operated only in environments for which it is suitable due to its protection type.
The housing ventilation slots must not be covered.

In plants where transient voltage peaks are susceptible to occur, the instruments must be equipped with additional protective filters or voltage limiters!

Caution! The instrument contains electrostatically sensitive components.

Please, follow the instructions given in the safety hints.

Electrical connections
The electrical connection of the interface can be done as two-wire RS 485, as well as four-wire RS 485 (often called RS 422).

2.2.1 RS 485 version (two-wire)

The bus is build as RS 485 - two-wire cable with common ground main.
All the participants of an RS 485 bus are connected in parallel to the signals 'Data A' and 'Data B'.
The meaning of the data line terms are defined in the unit as follows:

- for signal 1 (off) Data A is positive to Data B
- for signal 0 (on) Data A is negative to Data B

The terms Data A and Data B are reverse to A und B defined in [2] .

For the purpose of limiting ground current loops, signal ground (GND) can be grounded at one point via a resistor 'RGND' (100 ohms, ¼ watt).

Association of terms for the two-wire-MODBUS definition according to [1]:

Definition MODBUS	according to unit
D1	Data A
D0	Data B
Common	RGND

Notes:
(1) Terminating resistors between Data A and B at the cable ends (see 2.2.3 below)
(2) Screening (see 2.2.2 below)
(3) GND lead (see Fig. 6)

| dig280-1 | | | IOT 150 | M-4 | | ADAM-4520-D | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Signal | Terminal | Signal | Terminal | Signal | Terminal | Signal | Terminal |
| TXD-B | 15 | DATA-B | 3 | TXD-A | 3 | DATA - | |
| TXD-A | 17 | DATA-A | 8 | TXD-B | 4 | DATA+ | |
| GND | 13 | RGND | 5 | Shield | 5 | | |

There are various possibilities for cable entry of the RS 485 .
Fig. 1 : connection example four-wire RS 485 (RS 422)

2.2.2 RS 422 version (four-wire - RS 485)

The RS 422 bus is of the RS 485 four-wire type with two pairs of conductors and a common ground.
The data on the master wire pair (RXD) are received only by the slaves. The data on the slave wire pair (TXD) are received only by the master.
Allocation of descriptions for the four-wire MODBUS definition according to [1]:

Description MODBUS	correspondence in the instrument
TXD1	RXD-A
TXDO	RXD-B
RXD1	TXD-A
RXD0	TXD-B
Common	GND

dig280-1		IOT 150		M-4		ADAM-4520-A	
Signal	Terminal	Signal	Terminal	Signal	Terminal	Signal	Terminal
TXD-B	15	RXD-B	3	RXD-A	1	RX-	
TXD-A	17	RXD-A	8	RXD-B	2	RX ${ }_{+}$	
RXD-B	12	TXD-B	4	TXD-A	3	TX-	
RXD-A	14	TXD-A	9	TXD-B	4	TX +	
GND	13	GND	5	Shield	5		

The following cable connection methods are possible.
Fig. 2 connection example RS 485

Converter RS 232-RS 422 'M-4'

Converter RS 232-RS 422 'i-7520A'
(940477981944)

2.2.3 Cable installation

Depending on each application, suitable cables are to be used for the bus. When installing the cables, all relevant regulations and safety codes (e.g. VDE 0100) must be observed:

- Cable runs inside buildings (inside and outside of control cabinets)
- Cable runs outside buildings
- Potential balancing conductors
- Screening of cables
- Measures against electrical interference
- Length of spur lines

In particular, the following points must be considered:

- The RS 485 bus technology used here permits up to 32 devices in a segment to be connected to one bus cable. Several segments can be coupled by means of repeaters.
- The bus topology is to be designed as a line with up to 1000 m length per segment. Extensions by means of repeaters are permitted.
- The bus cable is to be taken from device to device (daisy chaining), i.e. not star connected.
- If possible, spur lines should be avoided, in order to prevent reflections and the associated disturbances in communication.
- The general notes on interference-free wiring of signal and bus leads are to be observed (see Operating notes "EMC - General information' (9407 047 09118)).
- To increase signal transmission reliability, we recommend using screened, twisted pairs for the bus leads.

2.2.4 Screening

The type of screening is determined primarily by the nature of the expected interference.

- For the suppression of electrical fields, one end of the screened cable must be grounded. This should always be done as the first measure.
- Interference due to alternating magnetic fields can only be suppressed, if the screened cable is grounded at both ends. However, this can lead to ground current earth loops: galvanic disturbance along the reference potential lead can interfere with the useful signal, and the screening effect is reduced.
- If several devices are linked to a single bus, the screen must be connected at each device, e.g. by means of screen clamps.
- The bus screen must be connected to a central PE point, using short, low-impedance connections with a large surface, e.g. by means of screen clamps.

2.2.5 Terminating resistors

The widespread US Standard EIA RS 485 recommends fitting terminating resistors at each end of the bus cable.
Terminating resistors usually have a value of approx. 120 ohms, and are connected in parallel between the data lines A and B (depending on the cable impedance; for details, see the cable manufacturer's data sheet). Their purpose is to eliminate reflections at the end of the leads, thus obtaining a good transmission quality. Termination becomes more important, the higher the transmission speed is, and the longer the bus leads are.

However, if no signals are applied to the bus, it must be ensured that the signal levels are clearly defined. This done by means of pull-up and pull-down resistors between +5 V or GND , and the drivers. Together with the bus terminating resistor, this forms a voltage divider. Moreover, it must be ensured that there is a voltage difference of at least $\pm 200 \mathrm{mV}$ between the data lines A and B, as seen by the receiver.
(i) Normally, an external voltage source is provided.

Fig. 6 shows the device connections as recommended by the MODBUS User Organization [1].
Fig. 3 Recommended connections

With four-wire connection (RS 422), each wire pair corresponds to the drawing above.
If no external voltage source is available, and if there are only a few participants on the bus (e.g. only a master and a slave device), and the transmission speed is low (e.g. 9600 bits/s), the lead lengths are short, and terminating resistors have been fitted, it is possible that the minimum signal level cannot be reached. This will cause disturbances in signal transmission.

Therefore, if only a few PMA devices are connected, we recommend the following procedure before fitting terminating resistors:

Baudrate	Lead length	No. of PMA devices	Terminating resistor
$\leq 9600 \mathrm{Bist} / \mathrm{s}$	$\leq 1000 \mathrm{~m}$	<8	no
$19200 \mathrm{Bit} / \mathrm{s}$	$\leq 500 \mathrm{~m}$	<8	no
$38400 \mathrm{Bit} / \mathrm{s}$	$\leq 250 \mathrm{~m}$	<8	no
beliebig		≥ 8	useful
			other cases: try out

If less than 8 PMA devices are connected to a bus with the above maximum lead lengths, no terminating resistors should be fitted.

Note: If additional devices from other manufacturers are connected to the bus, no general recommendations are possible - this means: trial and error!

2.2.6 Installation notes

- Measurement and data leads should be kept separate from control leads and power cables.
- Twisted and screened cables should be used to connect sensor. The screen must be grounded.
- Connected contactors, relays, motors, etc. should be fitted with RC snubber circuits in accordance with manufacturer specifications.
- The device must not be installed near powerful electrical or electromagnetic fields.
- The device is not certified for installation in explosion-hazarded areas.
- Incorrect electrical connections can result in severe damage to the device.
- Please observe all safety instructions.

2.3
 Bus settings

2.3.1 Bus address

The participant address of a device connected to a bus must be adjusted by one of the following means:

- the Engineering Tool BlueControl ${ }^{\circledR}$ using the menu item Othr/Addr
- or via the device's front panel (see below)

Fig. 4 Setting a bus address

Every device connected to a bus must have a different, unique address.

1.

Please regard: When allocating the unit's addresses don't give the same address to two units. In this case a strange behaviour of the whole bus becomes possible and the busmaster will not be able to communicate with the connected slave-units.

2.3.2 Transmission parameters

The transmission parameters of all devices linked to a bus must have the same settings.
Baudrate (bAud)
The baudrate is the measure of data transmission speed. The devices support the following transmission speeds:

- 38000 bits/s
- $19200 \mathrm{bits} / \mathrm{s}$
- 9600 bits/s
- $4800 \mathrm{bits} / \mathrm{s}$
- 2400 bits/s

Parity / Stop bit (PrtY)

The parity bit is used to check whether an individual fault has occurred within a byte during transmission.

The device supports:

- even parity
- odd parity
- no parity

With even parity, the parity bit is adjusted so that the sum of the set bits in the 8 data bits and the parity bit result in an even number. Conversely, the same applies for uneven parity.

If a parity error is detected upon receipt of a message, the receiving device will not generate an answer.
Other parameters are:

- 8 data bits
- 1 start bit
- 1 stop bit

1 or 2 stop bits can be selected when adjusting 'no parity'.
The max. length of a message may not exceed 256 bytes.

2.4 System layout

Please observe the guidelines and notes provided by the manufacturer of the master device regarding the layout of a communication system.

2.4.1 Minimum configuration of a MODBUS installation

A MODBUS installation consists of not less than the following components:

- a bus master, which controls the data traffic
- one or more slave participants, which provide data upon demand by the master
- the transmission media, consisting of the bus cable and bus connectors to link the individual participants, plus a bus segment (or several, which are connected by means of repeaters).

2.4.2 Maximum configuration of a MODBUS installation

A bus segment consists of max. 32 field units (active and passive). The greatest number of slave participants that can be operated by one MODBUS master via several segments, is determined by the internal memory structure of the master. Therefore, you should know the specifications of the master when planning a MODBUS installation.
The bus cable can be opened at any point in order to add another participant by means of a bus connector. At the end of a segment, the bus cable can be extended up to the total permissible length for a segment. The permissible length of a bus segment depends on the selected transmission speed, which in turn is determined mainly by plant layout (length of each segment, distributed inputs/outputs) and the required scan cycles for individual participants. All participants connected to the bus must be configured for the same transmission speed (bit rate).

MODBUS devices must be connected in a line structure.

If more than 32 participants are required, or larger distances than the permissible length of one segment are needed, the MODBUS installation can be extended by means of repeaters.

Fig. 5 structure

Slave without terminating resistor

Slave with terminating resistor

Repeater without terminating resistor
Repeater with terminating resistor

A fully configured MODBUS installation may contain max. 247 participants with the address range 1...247. Every installed repeater reduces the max. number of participants with a segment. Repeaters are passive participants and do not require a MODBUS address. However, its input circuit represents an additional load in the segment due to the current consumption of the bus driver. Nonetheless, a repeater has no influence on the total number of participants connected to the bus. The maximum number of series-connected repeaters can differ, depending on the manufacturer. Therefore, you should ask the manufacturer about possible limitations when planning a MODBUS installation.

2.4.3 Wiring inside buildings

The following wiring hints apply for twisted-pair cables with screen. The cable screen serves to improve overall electromagnetic compatibility.

Depending on requirements, the one or both ends of the cable screen must be connected to a central earth point (PE) by means of low-impedance connections with a large surface, e.g. screen clamps. When installing a repeater or field unit in a control cabinet, the cable screen should be connected to an earth rail mounted as close as possible to the cable entry into the cabinet.

The screen must be taken right up to the field unit, where it is to be connected to the conductive housing and/or the metal connector. Hereby, it
 must be ensured that the device housing (and possibly the control cabinet in which the device is installed), are held at equal ground potential by means of low-impedance connections with a large surface. Connecting a screen to a lacquered or painted surface is useless. By observing these measures, high-frequency interference will be grounded reliably via the cable screens. Should external interference voltages still reach the data lines, the voltage potential will be raised symmetrically on both lines, so that in general, no destructive voltage differences can arise. Normally, a shift of the ground potential by several volts will not have an effect on reliable data transmission. If higher voltages are to be expected, a potential balancing conductor with a minimum cross-section of $10 \mathrm{~mm}^{2}$ should be installed parallel to the bus cable, with connections to the reference ground of every field unit. In case of extreme interference, the bus cable can be installed in a metal conduit or channel. The conduit tube or the channel must be earthed at regular distances.

The bus cable must always be installed with a minimum separation of 20 cm from other cables carrying voltages above 60 V . Similarly, the bus cable must be run separately from telephone lines, as well as from cables leading into explosion-hazarded areas. In these cases, we recommend installing the bus cable in a separate cable tray or channel.

Cable trays or channels should always be made of conductive materials, and must be earthed at regular distances. Bus cables should not be subjected to any mechanical strains or obvious risks of damage. If this cannot be ensured, suitable measures must be undertaken, such as installation in conduit.

Floating installation:

If the installation must be floating (no earth connection) for certain reasons, the device reference ground must only have a high-impedance connection to earth (e.g. an RC combination). The system will then find its own earth potential. When connecting repeaters for the purpose of linking two bus segments, a floating installation is recommended, to prevent possible potential differences being transferred from one segment to the next.

3 Bus protocol

3.1

Composition of a transmission byte

Originally, the MODBUS protocol was defined for the communication between a supervisory system and the Modicon® PLC. It used a master/slave structure, in which only one device (master) is able to initiate data transactions (queries).
The query message from the master is answered (response) by other devices (slaves), which supply the requested data.
Moreover, the master can address a specific slave via its MODBUS address, or address all connected slaves by means of a general message (broadcast).
The MODBUS protocol determines the transmission formats for the query and the response. Function codes define the actions to be executed by the slaves.
Within the device, the MODBUS protocol uses the RTU (remote terminal unit) mode, i.e. every transmitted byte of a message contains two hexadecimal characters (0...9, A...F).

The composition of a byte in the RTU-protocol is as follows:

Start bit	8 data bits	Parity/Stop bit	Stop bit

3.2 General message frame

The message is read into a data buffer with a defined maximum length. Longer messages are not accepted, i.e. the device does not answer.

The message consist of the following elements:

Device address	Function code	Data field	CRC	End of frame detection
1 byte	1 byte	$\mathrm{N}^{*} 1$ bytes	2 bytes	

- Device address (Addr)

The device address is used for identification. Device addresses can be assigned in the range of $1 \ldots 127$. The device address '0' is reserved for 'Broadcast' messages to all slaves. A broadcast message can be transmitted e.g. with a write instruction that is then executed by all the slaves on the bus. Because all the slaves execute the instruction, no response messages are generated.

- Function code

The function code defines the transaction type in a message. The MODBUS specification defines more than 17 different function codes. Supported codes are described in Section 3.6. „Function codes".

- Data field

The data field contains the detailed specifications of the transaction defined by the function code. The length of the data field depends on the function code.

- CRC

As a further means of fault detection (in addition to parity bit detection) a 16-bit cyclical redundancy check (CRC) is performed. The CRC code ensures that communication errors are detected. For additional information, see Section 3.2.1. "CRC".

- End of frame detection

The end of a message is defined by a period of 3,5 characters, during which no data transfer occurs. For additional information, see Section 3.2.2. „End of frame detection"
(i) Further information is given in the documents named in [1] or under http://www.modbus.org.

3.2.1 CRC

The CRC is a 16 -bit value that is attached to the message. It serves to determine whether a transmitted message has been received without errors. Together with the parity check, this should detect all possible communication errors.
(i) If a parity fault is detected during reading, no response message will be generated.

The algorithm for generating a CRC is as follows:
(1) Load CRC register with FFFFhex.
(2) Exclusive OR the first transmit/receive byte with the low-order byte of the CRC register, putting the result into the CRC register, zero-filling the MSB.
(3) Shift the CRC register one bit to the right.
(4) If the expelled bit is a ' 0 ' repeat step 3. If the expelled bit is a ' 1 ', exclusive OR the CRC register with value A001hex.
(5) Repeat steps 3 and 4 for the other 7 data bits.
(6) Repeat steps 2 to 5 for all further transmit/receive bytes.
(7) Attach the result of the CRC register to the message (low-order byte first, then the high-order byte). When checking a received message, the CRC register will return ' 0 ', when the message including the CRC is processed.

3.2.2 End of frame detection

The end of a message (frame) is defined as a silence period of 3.5 characters on the MODBUS.
A slave may not start its response, and a master may not start a new transmission before this time has elapsed.
However, the evaluation of a message may begin, if a silence period of more than 1.5 characters occurs on the MODBUS. But the response may not start before 3,5 characters of silence.

Transmission principles

Two transmission modes are used with MODBUS:

- Unicast mode

- Broadcast mode

In the Unicast mode, the master addresses an individual device, which processes the received message and generates a response. The device address can be $1 . . .247$. Messages always consist of a query (request) and an answer (response). If no response is read within a defined time, a timeout error is generated.

In the Broadcast mode, the master sends a write instruction (request) to all participants on the bus, but no responses are generated. The address ' 0 ' is reserved for broadcast messages.

Response delay (dELY)

Some devices require a certain period to switch from transmit to receive. The adjusted delay is added to the silent period of 3,5 characters at the end of a message, before a response is generated. The delay is set in ms.

3.5 Modem operation (C.dEL)

The end of frame detection of a received MODBUS message can be increased by the period 'C.del'. This time is needed e.g. for transmission via a modem, if messages cannot be transmitted continuously (synchronous operation). The delay is set in ms.

3.6 Function codes

Function codes serve to execute instructions. The device supports the following function codes:

Function code hex		dez	Description
0×03	3	Read Holding (Output) Register	Reading of process data, parameters, and configuration data
0×04	4	Read Input Register	Reading of process data, parameters, and configuration data
0×06	6	Preset Single Register (Output)	Wordwise writing of a value (process value, parameter, or configuration data)
0×08	8	Diagnostics	Reading the MODBUS diagnostic register
0×10	16	Preset Multiple Register (Output)	Wordwise writing of several values (process data, parameter or configuration data)

The behaviour of function codes 3 and 4 is identical.
The following sections show various examples of message composition.

3.6.1 Reading several values

Messages with function codes 3 or 4 are used for (wordwise) reading of process data, parameters or configuration data. For reading 'Float' type data, 2 values must be requested for each datum.

The composition of a read message is as follows:
Request:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	03 or 04	Reading process data, parameters or configuration data
Start address High Start address Low	02	Starting address 650
No. of values	8 A	
CRC	00	2 datums (2 words)
	CRC-Byte1 CRC-Byte2	

Response:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	03 oder 04	Reading process data, parameters or configuration data
No. of bytes	04	4 data bytes are transmitted
Word 1	$\begin{aligned} & 00 \\ & D E \end{aligned}$	Process data, parameters or configuration data. Address 650= 222
Word 2	$\begin{aligned} & \hline 01 \\ & 4 D \\ & \hline \end{aligned}$	Process data, parameters or configuration data. Address 651= 333
CRC	CRC-byte1 CRC-byte2	

A broadcast message is not possible for function codes 3 and 4.

If the first addressed value is not defined, an error message "ILLEGAL DATA ADDRESS" is generated. If no further data are defined in the areas to be read following the first value, these areas will be entered with the value "NOT DEFINED VALUE". This enables areas with gaps to be to be read in a message.

3.6.2 Writing a single value

Messages with function code 6 are used for (wordwise) writing of process data, parameters or configuration data as integers. This function is not suitable for writing 'Float' type data.

The composition of a write message is as follows:
Request:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	06	Writing a single value (process data, parameter or configuration)
Write address High	02	Write address 650
Write address Low	8 A	
Value	00	Preset value $=123$
	$7 B$	
CRC	CRC-byte1	
CRC-byte2		

Response:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	06	Writing a single datum (process data, parameter or configuration)
Write address High	02	Write address 650
Write address Low	8 A	
Value	00	Preset value $=123$
	$7 B$	
CRC	CRC-Byte1	
CRC-Byte2		

If everything is correct, the response message corresponds exactly to the default.
The devices can also receive this message as a broadcast with the address ' 0 '.
A default value in the 'Real' data format is not possible, as only 2 bytes can be transmitted as value.
If a value is outside the adjustable range, the error message "ILLEGAL DATA VALUE" is generated. The datum remains unchanged. Also if the datum cannot be written (e.g. configuration data, and the device is online), an error message "ILLEGAL DATA VALUE" is generated.

3.7 Writing several values

Messages with function code 16 are used for (wordwise) writing of process data, parameters or configuration data. For writing 'Float' type data, 2 values must be transmitted for each datum.

The composition of a write message is as follows:
Request:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	10	Writing several process values, parameters or configuration data
Start address High	02	Write address 650
Start address Low	8 A	
No. of values	00	2 values
	02	4 data bytes are transmitted
No. of bytes	04	Process value, parameters or configuration data.
Word 1	00	Address 650 = 222
Word 2	DE	Process value, parameters or configuration data.
CRC	01	
	$4 d d r e s s ~ 651=333$	

Response:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	10	Writing several process values, parameters or configuration data
Start address High	02	Write address 650
Start address Low $8 A$		
No. of values	00	process values, parameters or configuration data
	02	
CRC	CRC byte1	
	CRC byte2	

The devices can also receive this message as a broadcast with the address ' 0 '.

If the first value is not defined, an error message "ILLEGAL DATA ADDRESS" is generated. If the first value cannot be written (e.g. configuration data, and the device is online), an error message "ILLEGAL DATA VALUE" is generated.

If no further data are defined or cannot be written in the specified areas following the first value, these areas will be skipped. The data in these locations remains unchanged. This enables areas with gaps, or that are currently not writable, to be changed with a message. No error message is generated.

If a value is outside the adjustable range, the error message "ILLEGAL DATA VALUE" is generated. Subsequent data are not evaluated. Previously accepted correct data are active.
3.8 Error record

An error record is generated, if a message is received correctly, but message interpretation or the modification of a datum is not possible.

If a transmission error is detected, no response is generated. The master must retransmit the message.
Detected transmission errors are:

- Parity fault
- Framing error (no stop bit received)
- Overrun error (receiving buffer has overflowed or data could not be retrieved quickly enough from the UART)
- CRC error

The composition of the error record is as follows:

Field name	Value	Explanation
Address	11	Address 17
Function	90	Error record for the message 'Writing several parameters or configuration data'. Composition: 80hex + function code
Error code	02	ILLEGAL DATA ADDRESS
CRC	CRC byte1 CRC byte2	

In the 'Function' field, the most significant bit is set.
The error code is transmitted in the subsequent byte.

3.8.1 Error codes

The following error codes are defined:

Code	Name	Explanation
01	ILLEGAL FUNCTION	The received function code is not defined in the device.
02	ILLEGAL DATA ADDRESS	The received address is not defined in the device, or the value may not be written (read only). If several data are read simultaneously (function codes 01, 03, 04) or written simultaneously (function codes 0F, 10), this error is only generated if the first datum is not defined.
03	ILLEGAL DATA VALUE	The received value is outside the adjusted limits or it cannot be written at present (device is not in the configuration mode). If several data are written simultaneously (function codes 0F, 10), this error is only generated if the first datum cannot be written.
04	SLAVE DEVICE FAILURE	More values are requested than permitted by the transmission buffer.

Other error codes specified in the MODBUS protocol are not supported.

3.9 Diagnosis

By means of the diagnosis message, the device can be prompted to send check messages, go into operational states, output counter values or to reset the counters.
This message can never be sent as a broadcast message.
The following functions have been defined:

Code	Explanation
Ox00	Return transmission of the received message
Ox01	Restart of communication (terminates the Listen Only mode)
Ox02	Return transmission of the diagnosis register
Ox04	Change to the Listen Only mode
Ox0A	Delete the counter and reset the diagnosis register
Ox0B	Return transmission of the message counter (all messages on the bus)
Ox0C	Reset of the counter for faulty message transmissions to this slave (parity or CRC error)
Ox0D	Return transmission of the counter for messages answered with error code
Ox0E	Return transmission of the message counter for this slave
Ox0F	Return transmission of the counter for unanswered messages
Ox10	Return transmission of the counter for messages answered with NAK
Ox11	Return transmission of the counter for messages answered with Busy
Ox12	Return transmission of the counter for too long messages
Ox40	Return transmission of the parity error counter
0x41	Return transmission of the framing error counter (stop bit not detected)
Ox42	Return transmission of the counter for full buffer (message longer than receiving buffer)

\square Request in the Integer format:
If the setting for Integer with decimals (most significant 3 bits) is used for the address, the counter contents will be transmitted in accordance with the necessary conversion factor.
\square Request in the Float format:
If the setting for Float (most significant 3 bits are 010) is used for the address, the counter contents will be transmitted in the IEEE format. The largest value is 65535 , because the counters in the device are designed as word counters.
In the Float format, a 4-byte data field is returned with a request for counter contents. In all other cases, a 2-byte data field is returned.

When switching into the Listen mode (0×04) and at restart after the device has changed into the Listen mode, no response is generated.
If a restart diagnosis message is received while the device is not in the Listen mode, the device generates a response.
A diagnosis message is composed as follows:
Request:

Field name	Value	Explanation
Address	11	Address 17
Function	08	Siagnosis message
Sub-function High	00	Sub-function code
Sub-function Low	YY	Further data definitions
Data field	Byte 1 Byte 2	
CRC	CRC byte1	
CRC byte2		

3.9.1 Return transmission of the received message (0×00)

The message serves as a check whether communication is operational.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0000	2 bytes of any content	Return transmission of the received datum

3.9.2 Restart of communication (terminates the Listen Only mode) (0x01)

The slave is instructed to initialize its interface, and to delete the event counters. In addition, the device is instructed to exit the Listen Only mode. If the device already is in the Listen Only mode, no response is generated.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0001	0000	0000

3.9.3 Return transmission of the diagnosis register (0×02)

The slave sends its 16 -bit diagnosis register to the master. The data contained in this register are freely definable. For example, the information could be: EEPROM faulty, LED defective, etc.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0002	0000	Contents of the diagnosis register

3.9.4 Change to the Listen Only mode (0x04)

The slave is instructed not to execute or answer any messages addressed to it. The device can only return to normal operation by means of the diagnosis message 'Sub-function 0001 ' or by means of a new power up.

The function serves to disable a module that is behaving erratically on the MODBUS, so that the bus can continue operations. The device does not generate a response after receiving this message.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0004	0000	No response

3.9.5 Delete the counter and reset the diagnosis register ($0 \times 0 \mathrm{~A}$)

The slave is instructed to delete the contents of its event counter and to reset the diagnosis register. Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
00 OA	0000	0000

3.9.6 Return transmission of the message counter (0x0B)

The slave is instructed to return the value of its message counter.
The counter contains the sum of all messages, which the slave has recorded on the bus. This count includes all the messages transmitted by the master and the other slaves. The count does not include the response messages of this slave.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
000 B	0000	Message counter

3.9.7 Return transmission of the counter for faulty message transmissions

The slave is instructed to return the value of its counter for faulty message transmissions.
The counter contains the sum of all messages addressed to the slave, in which an error was detected. Hereby, the faults can be CRC or parity errors.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
000 C	0000	Contents of counter for faulty message transmissions

3.9.8 Return transmission of the counter for messages answered with error code

The slave is instructed to return the value of its counter for the messages answered with error code. The counter contains the sum of all messages addressed to the slave, and which were answered with an error code.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
$000 D$	0000	Contents of counter for messages answered with an error code

3.9.9 Return transmission of the message counter for this slave

The slave is instructed to return the value of its counter for messages to this slave.
The counter contains the sum of all messages addressed to the slave.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
000 E	0000	Contents of counter for messages addressed to this slave

3.9.10 Return transmission of the counter for unanswered messages

The slave is instructed to return the value of its counter for unanswered messages.
The counter contains the sum of all messages addressed to the slave, which were not answered because of internal events or detected errors.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
000 F	0000	Contents of counter for unanswered messages

3.9.11 Return transmission of the counter for messages answered with NAK (0×10)

The slave is instructed to return the value of its counter for messages answered with NAK.
The counter contains the sum of all messages addressed to the slave, which were answered with NAK.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0010	0000	Contents of counter for messages answered with NAK

3.9.12 Return transmission of the counter for messages answered with Busy (0x11)

The slave is instructed to return the value of its counter for messages answered with Busy.
The counter contains the sum of all messages addressed to the slave, which were answered with Busy.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0012	0000	Contents of counter for messages answered with Busy

3.9.13 Return transmission of the parity error counter (0×40)

The slave is instructed to return the value of its counter for parity errors.
The counter contains the sum of all messages addressed to the slave, in which a parity error was detected. Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0040	0000	Contents of counter for the number of parity errors

3.9.14 Return transmission of the framing error counter (0×41)

The slave is instructed to return the value of its counter for the number of framing errors.
The counter contains the sum of all messages addressed to the slave, in which a framing error was detected. A framing error occurs, if the stop bit at the end of a byte is not detected.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0041	0000	Contents of counter for the number of framing errors

3.9.15 Return transmission of the counter for too long messages

The slave is instructed to return the value of its counter for too long messages.
The counter contains the sum of all messages addressed to the slave, which caused an overflow of the receiving buffer, or if the data were not retrieved from the UART quickly enough.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0042	0000	Counter for too long messages

4 MODBUS addresses, address areas, and address formats

Area definitions

The address is coded in 2 bytes. The most significant 3 bits determine the data transmission format. The following formats are available for rail line devices:

- Integer
- Integer with 1 decimal
- (Float acc. to IEEE)

Address area hex	dez. \quad Data transfer format	Smallest transferable value	Largest transferable value	Resolution	
$0 \times 0000 \ldots 0 \times 1$ FFF	$0 \ldots 8191$	Integer without decimals	-30000	+32000	$+/-1$
$0 \times 2000 \ldots 0 \times 3$ FFF	$8192 \ldots 16383$	Integer with 1 decimal	-3000.0	+3200.0	$+/-0.1$
$0 \times 4000 \ldots 0 \times 7$ FFF	$16384 \ldots 32767$	Float (IEEE format)	$-1.0 \mathrm{E}+037$	$+1.0 \mathrm{E}+037$	$+/-1.4 \mathrm{E}-045$

For integer numbers with and without decimals, the value range -30000 to +32000 is transmitted via the interface. Scaling with the factor 1 or 10 must be carried out by the transmitting device as well as by the receiving device.

- Values are transmitted in the Motorola format (big endian).
- The relevant areas are grouped for process data, parameter and configuration data reading and writing.
- Multiple definition of process data in different groups is possible.

4.2

Special values

The following special values are defined for transmission in the integer format:

- -31000 Sensor fault

This value is returned for data that do not represent a meaningful value due to a sensor fault.

- -32000 Switch-off value

The function is disabled.

- -32500 Undefined value

The device returns this value, if a datum is not defined within the requested range („NOT DEFINED VALUE").

- -32768 Corresponds to 0x8000 hex.

The value to be transmitted lies outside the transferable integer value range.

The following special values are defined for transmission in the Float format:

- -1.5E37 This datum is not defined.

The device returns this value, if a datum is not defined within the requested range.

4.3 Composition of the address tables

In the address tables shown in Section 5 , the addresses for every parameter of the corresponding data format are specified in decimal values.
The tables are structured as follows:

Name	R/W	Address	Integer	Real	Type	Value/off	Description
		base 1 dP					

- Name Description of the datum
- R/W permitted type of access: R = read, W = write
- Address integer Address for integer values
- base Integer without decimals
- $1 \mathrm{dP} \quad$ Integer with 1 decimal
- Real Floating point number / Float (IEEE format)
- Type internal data type
- Value/off permissible value range, switch-off value available
- Description Explanations

4.4 Internal data types

The following data types are assigned to data used in the device:

- Float

Floating point number
Value range: -1999 ... -0.001, 0, 0.001 ... 9999

- INT

Positive whole integer number
Value range: 0 ... 65535
Exception: Switch-off value '-32000'

- Text

Text string consisting of n characters, currently defined $n=5$
Permissible characters: 20 H ...7FH

- Long

Positive whole Long number
Value range: 0 ... 99999

- Enum

Selection value
5 Index
Index
A
adress areas 27-28
adress formats 27-28
adress tables 31-32
adressing 5
area definitions 27
B
baudrate 13
broadcast 17
broadcast - mode 18
bus adress 13
bus protocol 17-26
bus segment 15
busprotocol 17-26
C
cable installation 11
cable screen 16
commisioning the interface 6-14
composition of the address tables 28
CRC 17-18
D
data 17
device address 17
diagnosis 23-26
E
electrical connections 6-12
end of frame detection 18
error codes 22
error record 22
Fformat- float27

- float acc. to ieee 27
- integer 27
- motorola 27
four-wire 9
function code 17,
19-20
function codes 19-20
G
general message frame 17
I
installation notes 13
internal data types 28
L
lead length 5
M
max. length 14
maximum configuration 15
modbus adresses 27-28
modem operation 18
mounting 6
\mathbf{P}
parity error 14
R
reading values 19
references 5
repeater 15
response delay 18
RS 422 9
RS 485 7
S
screening 11
special values 27
- sensor fault 27
- undefined value 27
stop bit 13
T
terminating resistors 11
transmission byte 17
transmission format 27
two-wire 7
U
unicast - mode 18
W
wiring 16
writing a value 20
writing several values 21

$6 \quad$ Address tables

The following sections describe the address tables for:

- Digital indicator Dig 280-1

Table Of Contents

1 Func

ConF 1
PAr 2
Signal 3
2 InP
ConF 7
PAr 8
3 Lim
ConF 9
Signal 9
PAr 10
Signal 11
4 Lim2
ConF 11
PAr 12
Signal 12
5 Lim3
ConF 12
PAr 13
Signal 14
6 LOG
ConF 14
Signal 16
7 ohn:
PAr 17
Signal 17
8 ohn=1
Signal 19
9 ohn 3
Signal 20
10 othr
ConF 20
Signal 21 21
11 Out. 1
ConF 25
Signal 26
12 Out. 2
ConF 26
Signal 27
13 Out. 3
ConF 27
Signal 29
14 SEtP
Signal 30
15 Tool
ConF 30

Fnc. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5064 \\ 13256 \\ 21448 \\ 29640 \end{array}$	42896	Enum	Enum_Func2	function 2
						$0 \quad$ indi	

C.Fnc	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5050 \\ 13242 \\ 21434 \\ 29626 \end{array}$	42868	Enum	Enum_CFnc		Control behaviour (algorithm) referred to output value: e.g. 2- or 3-point controller, signaller, 3-point stepping control.
						0 on	on/off controller or signaller with one output. The on/off controller or signaller switches if the process value drifts from the setpoint more than the hysteresis.	
						$\begin{array}{ll} 1 & \text { PID } \\ & \text { an } \\ & \text { dev } \end{array}$	PID control, e.g. heating, with one output: Switched as a digital output (2-point) or used as an analog output (continuous). PID controllers respond quickly to changes of the control deviation, and typically do not exhibit any permanent control offset.	

C.Act	r/w	base 1 dP 2 dP 3 dP	5052 13244 21436 29628	42872	Enum	Enum_CAct		Operating sense of the controller. Inverse operation (e.g. heating) means increased heat input when the process value falls. Direct operation (e.g. cooling) means increased heat input when the process value increases.
						$0 \quad \begin{aligned} & \text { In } \\ & \text { falin }\end{aligned}$	Inverse or opposed-sense response, e.g. heating. The controller output is increased with a falling process value, and decreased with a rising process value.	
						Dir	Direct or same-sense response, e.g. cooling. The controller output is increased with a rising process value, and decreased with a falling process value.	

rnG.L	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5059 \\ 13251 \\ 21443 \\ 29635 \end{array}$	42886	Float	$\underset{\mathrm{a}}{-19999 \ldots 9999 \quad \square}$	Lower limit for the controller's operating range. The control range is independent of the measurement range. Reducing the control range will increase the sensitivity of the self-tuning process.
rnG.H	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5060 \\ 13252 \\ 21444 \\ 29636 \end{array}$	42888	Float	$\begin{array}{ll} -19999 \ldots 9999 \\ \mathrm{a} & \square \end{array}$	Upper limit for the controller's operating range. The control range is independent of the measurement range. Reducing the control range will increase the sensitivity of the self-tuning process.

1 Func								
PArA								
Name	r/w	Adr.	teger	real	Typ	Value/off		Description
tEmP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5021 \\ 13213 \\ 21405 \\ 29597 \end{array}$	42810	Float	0...99999	ㅁ	Constant sensor temperature. With 02 measurement, the actual oxygen content is derived from the constant sensor temperature and the EMF (electromotive force in volts) generated by the sensor.Note: A constant sensor temperature is only ensured with heated lambda sensors.
Pb1	r/w	$\begin{array}{\|l} \text { base } \\ 1 d P \\ 2 d P \\ 3 d P \end{array}$	$\begin{array}{r} 5000 \\ 13192 \\ 21384 \\ 29576 \end{array}$	42768	Float	1...99999	-	Proportional band 1 (heating) in engineering unit, e.g. ${ }^{\circ} \mathrm{C}$. Pb defines the relationship betw een controller output and control deviation. The smaller Pb is, the stronger is the control action for a given control deviation. If Pb is too large or too small, the control loop will oscillate (hunting).
ti1	r/w	$\begin{aligned} & \text { base } \\ & \text { ldP } \\ & 2 d P \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5002 \\ 13194 \\ 21386 \\ 29578 \end{array}$	42772	Float	1...99999	\square	Integral action time 1 (heating) [5]. Ti is the time constant of the integral portion. The smaller Ti is, the faster is the response of the integral action. Ti too small: Control tends to oscillate. Ti too large: Control is sluggish and needs a long time to line out.
td1	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 5004 \\ 13196 \\ 21388 \\ 29580 \end{array}$	42776	Float	1...99999	\square	Derivative action time 1 (heating) [$[5$, second parameter set. Td is the time constant of the derivative portion. The faster the process value changes, and the larger the value of Td is, the stronger will be the derivative action. Td too small: Very little derivative action. Td too large: Control tends to oscill ate.
t1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5006 \\ 13198 \\ 21390 \\ 29582 \end{array}$	42780	Float	0,4...99999	\square	M inimum duty cycle 1 (heating) [s]. With the standard duty cycle converter, the shortest pulse duration is $1 / 4 \mathrm{xt1}$. If the duty cycle is not to be optimized, this must be entered in the configuration. (Default: Optimization of the duty cycle during self-tuning, but also if the output value is less than 5%).
SH	r/w	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 5014 \\ 13206 \\ 21398 \\ 29590 \end{array}$	42796	Float	0...99999	口	Neutral zone, or switching difference of the signaller [engineering unit].Too small: unnecessarily high switching frequency.Too large: reduced controller sensitivity.W ith 3-point controllers this slows dow n the direct transition from heating to cooling. With 3 -point stepping controllers, it reduces the switching operations of the actuator around setpoint.
Y.Lo	r/w	$\begin{array}{\|l\|} \hline \text { base } \\ \text { ddP } \\ 2 d P \\ 3 d P \\ \hline \end{array}$	$\begin{array}{r} 5018 \\ 13210 \\ 21402 \\ 29594 \end{array}$	42804	Float	-105... 105	\square	Lower output limit [\%] The range is depedant of the type of controller: 2 point controller: 0...ymax+1 3 point controller: -105 ymax-1
Y.Hi	r/w	$\begin{array}{\|l} \text { base } \\ \text { ddP } \\ 2 d P \\ 3 d P \end{array}$	$\begin{array}{r} \hline 5019 \\ 13211 \\ 21403 \\ 29595 \end{array}$	42806	Float	-105...105	\square	Upper output limit [\%] The range is ymin +1 105
Y2	r/w	$\begin{array}{\|l} \text { base } \\ 1 d P \\ 2 d P \\ 3 d P \\ \hline \end{array}$	$\begin{array}{r} 5017 \\ 13209 \\ 21401 \\ 29593 \end{array}$	42802	Float	-100... 100	-	Second positioning value [\%]. Activated Y2 = positioner control. Caution: The parameter 'positioning output Y2' must not be confused with the controller output Y2!
Y. 0	r/w	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 5020 \\ 13212 \\ 21404 \\ 29596 \end{array}$	42808	Float	-105... 105	\square	Offset for die positioning value [\%]. This is added to the controller output, and has the most effect with P and PD controllers. (W ith PID controllers, the effect is compensated by the integral action.) W ith a control deviation $=0$, the P controller generates a control output YO.

1 Func

PAra

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
SP.LO	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 3100 \\ 11292 \\ 19484 \\ 27676 \end{array}$	38968	Float	$\begin{array}{ll} -19999 \ldots 9999 \\ \mathrm{a} \end{array} \quad \square$	Lower setpoint limit. The setpoint is raised to this value automatically, if a lower setpoint is adjusted. BUT: The (safety) setpoint W 2 is not restricted by the setpoint limits! The setpoint reserve for the step function is 10% of SPHi - SPLo.
SP.Hi	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 3101 \\ 11293 \\ 19485 \\ 27677 \end{array}$	38970	Float	$\begin{array}{ll} \hline-19999 \ldots 9999 \\ 0 & \square \end{array}$	Upper setpoint limit. The setpoint is reduced to this value automatically, if a higher setpoint is adjusted. BUT: The (safety) setpoint W 2 is not restricted by the setpoint limits! The setpoint reserve for the step function is 10% of SPHi - SPLo.

Name	r/w	Adr.	teger	real	Typ	Value/off	Description
C.InP	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5102 \\ 13294 \\ 21486 \\ 29678 \end{array}$	42972	Float	$\begin{array}{ll} \hline-19999 \ldots 9999 \\ \mathrm{a} \end{array} \square$	process value
In.Hi	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5106 \\ 13298 \\ 21490 \\ 29682 \end{array}$	42980	Float	$\begin{aligned} & -19999 \ldots 9999 \\ & \mathrm{a} \end{aligned} \square$	maximum value
In.Lo	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5105 \\ 13297 \\ 21489 \\ 29681 \end{array}$	42978	Float	$\begin{aligned} & -19999 \ldots 9999 \\ & \mathrm{a} \end{aligned} \quad \square$	minimum value

1 Func

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
St.Cntr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5100 \\ 13292 \\ 21484 \\ 29676 \end{array}$	42968	Int	0... 65535	\square	Status informations of the controller.f.e. switching signals, controller off or informations about selftuning. The controller sratus shows the actual adjustments of the controller.

Bit 0: Switching signal heating: 0: off 1 : on
Bit 1: Switching signal cooling: 0 : off 1: on
Bit 2: Sensor error 0: ok 1: error
Bit 3: Controlsignal: M anual/automatic 0: automatic 1: manual
Bit 4: Controlsignal: Y2
$0: Y 2$ not activ 1: Y2 activ
Bit 5: Controlsignal: Ext. setting of outputsignal
0 : not activ 1 : activ
Bit 6: Controlsignal: Controller off
0 : contr. on 1: contr. off
Bit 7: Controlsignal:The activ parameter set
0 : parameterset 1
1: parameterset 2
Bit 8: Loopalarm
0: no alarm
1: alarm
Bit 9: Soft start function
0 : not activ
1: activ
Bit 10: Rate to setpoint
0 : not activ
1: activ
Bit 11: Not used
Bit 12-15: Internal functional statuses (operating state)
0000 Automatic
0001 Selftuning is running
0010 Selftuning faulty (W aiting for operator signal)
0011 Sensor error
0100 Not used
0101 Manual
0111 Not used
1000 M anual, with external presetting of the outputsignal
1001 Outputs switched off (neutral)
1010 Abortion of the selftuning (by control- or error-signal)

diFF	r	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 5104 \\ 13296 \\ 21488 \\ 29680 \end{array}$	42976	Float	$\begin{aligned} & -19999 \ldots 9999 \quad \square \\ & \mathrm{a} \end{aligned}$	Control deviation, is defined as process value minus setpoint. Positive X_{w} means that the process value is above the setpoint. A small control deviation indicates precise control.
Tu1	r	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 5141 \\ 13333 \\ 21525 \\ 29717 \end{array}$	43050	Float	0...99999 \square	'Heating' delay time of the loop. Tu is calculated by the self-tuning function: It is the time delay before the process reacts significantly. In effect, Tu is a dead time that is determined by the reaction of the process to a change of the control output. It is used for defining controller action.
Ypid	r	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 5103 \\ 13295 \\ 21487 \\ 29679 \end{array}$	42974	Float	-120... $120 \square$	Output value Ypid is the output signal determined by the controller, and from which the sw itching pulses for the digital and analog control outputs are calculated. Ypid is also available as an analog signal. e.g. for visualization.

1 Func

Signa

SP.EF	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5101 \\ 13293 \\ 21485 \\ 29677 \end{array}$	42970	Float	$\begin{aligned} & -19999 \ldots 9999 \\ & \mathrm{a} \end{aligned}$	\square	Effective setpoint. The value reached at the end of setpoint processing, after taking W 2 , external setpoint, gradient, boost function, programmer settings, start-up function, and limit functions into account. Comparison with the effective process value leads to the control deviation, from which the necessary controller response is derived.
St.Tune	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5140 \\ 13332 \\ 21524 \\ 29716 \end{array}$	43048	Int	0... 65535	\square	Status information during self-tuning, e.g. the actual condition, and possible results, warnings, and error messages.

Bit 0 Process lined out; $0=$ No; $1=Y$ es
Bit 1 Operating mode 'Self-tuning controller; $0=0 \mathrm{ff} ; 1=0 n$
Bit 2 Result of controller self-tuning; $0=0 \mathrm{~K} ; 1=$ Fault
Bit 3-7 Not used
Bit 8-11 Result of the 'heating' attempt
0000 No message / Attempt still running
0001 Successful
0010 Successful, with risk of exceeded setpoint
0011 Error: W rong operating sense
0100 Error: No response from process
0101 Error: Turning point too low
0110 Error: Risk of exceeded setpoint
0111 Error: Step output too small
1000 Error: Setpoint reserve too small
Bit 12-15 Result of 'cooling' attempt (same as heating attempt)

Opt.Stat	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5149 \\ 13341 \\ 21533 \\ 29725 \end{array}$	43066	Int	0... 65535	\square	Internal status of self-tuning. Status of automatic function when using step response and pulse response procedure.
Vmax1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5142 \\ 13334 \\ 21526 \\ 29718 \end{array}$	43052	Float	0... 99999	\square	Max. rate of change for 'heating', i.e. the fastest process value increase during self-tuning. Vmax is calculated by the self-tuning function, and is determined by the reaction of the process to a change of the control output. It is used for defining controller action.
Kp1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5143 \\ 13335 \\ 21527 \\ 29719 \end{array}$	43054	Float	0... 99999	\square	Process gain for 'heating'. For control loops with self-regulation, process gain is the ratio determined by the change of the control output and the resulting permanent change of the process value. Kp is calculated by the self-tuning function, and is used for defining controller action.

1 Func

- Sionnal

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
M sg1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5144 \\ 13336 \\ 21528 \\ 29720 \end{array}$	43056	Enum	Enum_Msg	The result of self-tuning for 'heating' indicates whether self-tuning was successful, and with what result.

0 No message / Tuning attempt still running
1 Self-tuning has been completed successfully. The new parameters are valid.
2 Self-tuning was successful, but with a warning. The new parameters are valid. Note: Self-tuning was aborted due to the risk of an exceeded setpoint, but useful parameters were determined. Possibly repeat the attempt with an increased setpoint reserve.
3 The process reacts in the wrong direction.
Possible remedy: Reconfigure the controller (inverse <-> direct). Check the controller output sense (inverse $<>$ direct).
4 No response from the process. Perhaps the control loop is open. Possible remedy: Check sensor, connections, and process.
5 The process value turning point of the step response is too low. Possible remedy: Increase the permitted step output range, i.e. increase the parameter Y.Hi ('heating') or reduce the parameter Y.Lo ('cooling').

6 Self-tuning was aborted due to the risk of an exceeded setpoint. No useful parameters were determined.
Possible remedy: Repeat the attempt with an increased setpoint reserve.
7 The step output change is not large enough (minimum change $>5 \%$). Possible remedy: Increase the permitted step output range, i.e. increase the parameter Y.Hi ('heating') or reduce the parameter Y.Lo ('cooling').

8 The controller is waiting. Setpoint reserve must be given before generating the step output change.
Acknow ledgment of this error message leads to switch-over to automatic mode. If self-tuning shall be continued, change set-point, change process value, or decrease set-point range.

S.Lin	r/w	base 1 dP 2 dP 3 dP	1151 9343 17535 25727	35070	Enum	Enum_SLin	Linearization (not adjustable for all sensor types S.tYP). Special linearization. The linearization table can be created with the Engineering Tool. The default characteristic is for KTY 11-6 temperature sensors.
0 No special linearization. 1Special linearization. Definition of the linearization table is possible with the Engineering Tool. The default setting is the characteristic of the $K T Y ~ 11-6 ~ t e m p e r a t u r e ~ s e n s o r . ~$							

2 InP
 Con=
 $$
\begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline \multirow[t]{2}{*}{\begin{tabular}{l} PArA \\ Name \end{tabular}
$$

 \& \& \& \& \& \& \& \&
\hline \& r/w \& \multicolumn{2}{|l|}{Adr. Integer} \& real \& Typ \& Value/off \& \& Description

\hline InL \& r/w \& $$
\begin{aligned}
& \text { base } \\
& 1 \mathrm{dP} \\
& 2 \mathrm{dP} \\
& 3 \mathrm{dP}
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
1100 \\
9292 \\
17484 \\
25676
\end{array}
$$

\] \& 34968 \& Float \& \[

$$
\begin{aligned}
& -19999 \ldots 9999 \\
& \mathrm{a}
\end{aligned}
$$
\] \& \square \& Input value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the lower scaling point (e.g. 4 mA) is done using the corresponding electrical value.

\hline OuL \& r/w \& $$
\begin{aligned}
& \text { base } \\
& 1 \mathrm{dP} \\
& 2 \mathrm{dP} \\
& 3 \mathrm{dP}
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
1101 \\
9293 \\
17485 \\
25677
\end{array}
$$

\] \& 34970 \& Float \& \[

$$
\begin{aligned}
& -19999 \ldots 9999 \\
& \mathrm{a}
\end{aligned}
$$
\] \& \square \& Display value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the lower scaling point, e.g. 4 mA is displayed as 2 [pH].

\hline InH \& r/w \& $$
\begin{aligned}
& \text { base } \\
& 1 \mathrm{dP} \\
& 2 \mathrm{dP} \\
& 3 \mathrm{dP}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
1102 \\
9294 \\
17486 \\
25678
\end{gathered}
$$

\] \& 34972 \& Float \& \[

$$
\begin{aligned}
& -19999 \ldots 9999 \\
& 0
\end{aligned}
$$
\] \& \square \& Input value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the upper scaling point (e.g. 20 mA) is done using the corresponding electrical value.

\hline OuH \& r/w \& $$
\begin{array}{|l}
\text { base } \\
1 \mathrm{dP} \\
2 \mathrm{dP} \\
3 \mathrm{dP}
\end{array}
$$ \& \[

$$
\begin{array}{r}
1103 \\
9295 \\
17487 \\
25679
\end{array}
$$

\] \& 34974 \& Float \& \[

$$
\begin{aligned}
& -19999 \ldots . . .9999 \\
& \mathrm{a}
\end{aligned}
$$
\] \& \square \& Display value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the upper scaling point, e.g. 20 mA is displayed as 12 [pH].

\hline t.F \& r/w \& $$
\begin{array}{|l|}
\hline \text { base } \\
1 \mathrm{dP} \\
2 \mathrm{dP} \\
3 \mathrm{dP} \\
\hline
\end{array}
$$ \& \[

$$
\begin{gathered}
1104 \\
9296 \\
17488 \\
25680
\end{gathered}
$$
\] \& 34976 \& Float \& 0... 100 \& \square \& Filter time constant [s]. Every input is fitted with a digital (software) low-pass filter for suppressing process-related disturbances on the input leads. Higher filter settings improve the suppression, but increase the delay of the input signals.

\hline b.F \& r/w \& $$
\begin{aligned}
& \text { base } \\
& 1 \mathrm{dP} \\
& 2 \mathrm{dP} \\
& 3 \mathrm{dP}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
1105 \\
9297 \\
17489 \\
25681
\end{gathered}
$$

\] \& \[

34978
\] \& Float \& 0... 99999 \& \square \& The filter bandw idth is used in a 1st order mathematical filter. The filter bandwidth is the adjustable tolerance around the measured value within which the filter is active. M easurement value changes in excess of the adjusted bandwidth are not filtered.

\hline E.tc \& r/w \& $$
\begin{aligned}
& \text { base } \\
& 1 \mathrm{dP} \\
& 2 \mathrm{dP} \\
& 3 \mathrm{dP}
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
1106 \\
9298 \\
17490 \\
25682
\end{array}
$$

\] \& \[

34980
\] \& Float \& 0... 100 \& \square \& External temperature compensation (temperature at the junction of thermocouple/ copper lead with external temperature compensation).

\hline
\end{tabular}

Stona							
Name	r/w	Adr. Integer		real	Typ	Value/off	Description
InP.r		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1170 \\ 9362 \\ 17554 \\ 25746 \end{array}$	35108	Float	$\begin{aligned} & -19999 \ldots 9999 \\ & 0 \end{aligned}$	M easurement value before the measurement value correction (unprocessed).
Fail		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1171 \\ & 9363 \\ & 17555 \\ & 25747 \end{aligned}$	35110	Enum	Enum_InpFail	Input circuit fault: faulty or incorrectly connected sensor.
						$\begin{array}{ll}\text { 0 } & \text { no error } \\ 1 & \text { sensor break } \\ 2 & \text { Incorrect polar } \\ 4 & \text { Short circuit at }\end{array}$	ity at input.
InP		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1172 \\ 9364 \\ 17556 \\ 25748 \end{gathered}$	35112	Float	$\begin{array}{ll} -19999 \ldots 9999 \\ a & \square \end{array}$	M easurement value after the measurement value correction (e.g. with offset or 2-point correction, and scaling).
F.Inp		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1180 \\ 9372 \\ 17564 \\ 25756 \end{gathered}$	35128	Float	$\begin{array}{ll} -19999 \ldots 9999 & \square \\ \mathrm{a} \end{array}$	Forcing the value for an analog input INP. Forcing involves the external operation of an input. The instrument takes over the value at this input like a measurement value (preset value for inputs from a superordinate system, e.g. for a function test.)

3 Lim									
-	Con=								
	Name	r/w Adr. Integer real T				Typ	Value/off		Description
	Fnc. 1	r/w	base 1 dP 2 dP 3 dP	2150 10342 18534 26726	37068	Enum	Enum_Fcn		Activation and adjustment of the limit value alarm (e.g. for input circuit monitoring), e.g. with/without storage.
							0 No limit value monitoring.		
								measured value monitoring. The alarm signal is generated, if the limit is exceeded. If the measured value is within the limits (including hysteresis) again, this alarm signal is resetted.	
								M easured value monitoring + alarm status latch. An alarm signal is generated, if the limit is exceeded. A latched alarm signal remains latched until it is manually resetted.	
							3 S	Signal monitoring for rate of change (per minute).	
							4 S	Signal monitoring for rate of change (per minute) + storage of the alarm status.	

PArA							
Name	r/w	Adr.	eger	real	Typ	Value/off	Description
L. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2100 \\ 10292 \\ 18484 \\ 26676 \end{array}$	36968	Float	$\begin{aligned} & -19999 \ldots 9999 \quad \square \\ & 0 \end{aligned}$	Lower limit value. The alarm is triggered if the value falls below the limit, and is reset with lower limit value plus hysteresis.
H. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2101 \\ 10293 \\ 18485 \\ 26677 \end{array}$	36970	Float	$\begin{array}{\|cc\|} \hline-19999 \ldots 9999 \\ 0 \end{array}$	Upper limit value. The alarm is triggered if the value rises above the limit, and is reset with upper low er limit value plus hysteresis.
HYS. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2102 \\ 10294 \\ 18486 \\ 26678 \end{array}$	36972	Float	0...99999 \square	Hysteresis of the limit value. Switching difference for upper and lower limit value. The limit value must change by this amount (rise above upper limit or fall below low er limit) before the limit value alarm is reset.
dEL. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2103 \\ 10295 \\ 18487 \\ 26679 \end{array}$	36974	Float	0...99999 \square	Delayed alarm of a limit value. The alarm is only triggered after the defined delay time. It is only indicated, and possibly stored, if it is still present after the delay time has elapsed.

3 Lim

Signal

4 Lim2

PArA

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
L. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2200 \\ 10392 \\ 18584 \\ 26776 \end{array}$	37168	Float	$\begin{aligned} & -19999 \ldots . .9999 \\ & a \end{aligned}$	\square	Lower limit value. The alarm is triggered if the value falls below the limit, and is reset with lower limit value plus hysteresis.
H. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2201 \\ 10393 \\ 18585 \\ 26777 \end{array}$	37170	Float	$\begin{aligned} & -19999 \ldots 9999 \\ & \mathrm{a} \end{aligned}$	\square	Upper limit value. The alarm is triggered if the value rises above the limit, and is reset with upper low er limit value plus hysteresis.
HYS. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2202 \\ 10394 \\ 18586 \\ 26778 \end{array}$	37172	Float	0...99999	\square	Hysteresis of the limit value. Switching difference for upper and lower limit value. The limit value must change by this amount (rise above upper limit or fall below low er limit) before the limit value alarm is reset.
dEL. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2203 \\ 10395 \\ 18587 \\ 26779 \end{array}$	37174	Float	0... 99999	\square	Delayed alarm of a limit value. The alarm is only triggered after the defined delay time. It is only indicated, and possibly stored, if it is still present after the delay time has elapsed.

5 Lim3

Con=								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
Fnc. 3	r/w	base 1 dP 2dP 3 dP	2350 10542 18734 26926	37468	Enum	Enum_Fcn		Activation and adjustment of the limit value alarm (e.g. for input circuit monitoring), e.g. with/without storage.
0 No limit value monitoring.								
						$1 \quad \mathrm{~m}$	measured value monitoring. The alarm signal is generated, if the limit is exceeded. If the measured value is within the limits (including hysteresis) again, this alarm signal is resetted.	
							M easured value monitoring + alarm status latch. An alarm signal is generated, if the limit is exceeded. A latched alarm signal remains latched until it is manually resetted.	
						3 S	Signal monitoring for rate of change (per minute).	
						4 S	Signal monitoring for rate of change (per minute) + storage of the alarm status.	

5 Lim3								
-ConF								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
Src. 3	r/w	base 1dP 2dP 3dP	2351 10543 18735 26927	37470	Enum	Enum_Src		Source for limit value. Selection of which value is to be monitored.
						0 Pro		Process value = absolute alarm
							control deviation Xw (process value - set-point) = relative alarm Note: M onitoring with the effective set-point W eff. For example using a ramp it is the changing set-point, not the target set-point of the ramp.	
							Control deviation XW (= relative alarm) with suppression during start-up and setpoint changes. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again, at the latest after 10 * T .	
						$\begin{array}{ll}3 & \text { M } \\ 6 & \text { eff } \\ & \text { For } \\ \\ \\ & \text { in }\end{array}$	Measured value of the analog input INP1.	
							effective set-point W eff. For example the ramp-function changes the effective set-point untill it matches the internal (target) set-point.	
						7 cor	correcting variable y (controller output)	
							Control deviation Xw (=relative alarm) with suppression during start-up and setpoint change. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again.	

PAra								
Name	r/w	Adr. I	ger	real	Typ	Value/off		Description
dEL. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2303 \\ 10495 \\ 18687 \\ 26879 \end{array}$	37374	Float	0...99999	\square	Delayed alarm of a limit value. The alarm is only triggered after the defined delay time. It is only indicated, and possibly stored, if it is still present after the delay time has elapsed.
L. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2300 \\ 10492 \\ 18684 \\ 26876 \end{array}$	37368	Float	$\begin{aligned} & -19999 \ldots 9999 \\ & 0 \end{aligned}$		Lower limit value. The alarm is triggered if the value falls below the limit, and is reset with low er limit value plus hysteresis.
H. 3	r / w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2301 \\ 10493 \\ 18685 \\ 26877 \end{array}$	37370	Float	$\begin{aligned} & -19999 \ldots . . .9999 \\ & \mathrm{a} \end{aligned}$		Upper limit value. The alarm is triggered if the value rises above the limit, and is reset with upper low er limit value plus hysteresis.
HYS. 3	r / w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2302 \\ 10494 \\ 18686 \\ 26878 \end{array}$	37372	Float	0...99999		Hysteresis of the limit value. Switching difference for upper and lower limit value. The limit value must change by this amount (rise above upper limit or fall below lower limit) before the limit value alarm is reset.

5 Lim3

Signal

6 LOGI

Con=

rES.L	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1055 \\ 9247 \\ 17439 \\ 25631 \end{gathered}$	34878	Enum	Enum_dlnP4	Signal source for aktivating the function Reset of minimum value
0 no function (switch-over via interface is possible)							
						2 Di	Digital Input DI1 switches
						3 DI2	DI2 switches (only visible with OPTION)
						4 DI3	DI3 switches (only visible with OPTION)
						$5 \quad \mathrm{~F}$-ke	F-key switches.

rES.H	$\begin{array}{\|l\|l} \hline \text { r/w } & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{array}$	$\begin{array}{ll} 1056 & 34880 \\ 9248 & \\ 17440 & \\ 25632 & \end{array}$	Enum	Enum_dnP4	Signal source for activating the function Reset of maximum value
				0 no function (switch-over via interface is possible)	
				Digital Input D11 sw itches	
				DI2 switches (only visible with OPTION)	
				DI3 switches (only visible with OPTION)	
				F-key switches.	

di.Fn	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1050 \\ 9242 \\ 17434 \\ 25626 \end{array}$	34868	Enum	Enum_difn		Function of digital inputs (valid for all inputs)
						B	Basic setting 'Off': A permanent positive signal switches this function 'On', which is connected to the digital input. Removal of the signal switches the function 'Off' again.	
						1 B	Basic setting 'On': A permanent positive signal switches this function 'Off', which is connected to the digital input. Removal of the signal switches the function 'On' again.	
						$\begin{array}{ll} 2 & \text { Pus } \\ & \text { pos } \\ \text { sigr } \end{array}$	Push-button function. Basic setting 'Off'. Only positive signals are effective. The first positive signal switches 'On'. Removal of the signal is necessary before the next positive signal can switch 'Off'.	

7 ohnE

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
St.Ala	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 250 \\ 8442 \\ 16634 \\ 24826 \end{array}$	33268	M ask	0... 0	\square	Alarm status: Bit-wise coded status of the individual alarms, e.g. exceeded limit value or Loop.

Bit 0 Existing/stored exceeded limit 1
Bit 1 Existing/stored exceeded limit 2
Bit 2 Existing/stored exceeded limit 3
Bit 3 Not used
Bit 4 Existing/stored loop alarm
Bit 5 Existing/stored heating current alarm
Bit 6 Existing/stored SSR alarm
Bit 7 Not used
Bit 8 Existing exceeded limit 1
Bit 9 Existing exceeded limit 2
Bit 10 Existing exceeded limit 3
Bit 11 Not used
Bit 12 Existing loop alarm
Bit 13 Existing heating current alarm
Bit 14 Existing SSR alarm
Bit 15 Not used

St.Do	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 251 \\ 8443 \\ 16635 \\ 24827 \end{array}$	33270	M ask	0... 0	\square	Status of the digital outputs Bit 0 digital output 1 Bit 1 digital output 2 Bit 2 digital output 3 Bit 3 digital output 4 Bit 4 digital output 5 Bit 5 digital output 6
St.Ain	r	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \\ \hline \end{array}$	$\begin{array}{r} 252 \\ 8444 \\ 16636 \\ 24828 \end{array}$	33272	M ask	0... 0	\square	Bit-coded status of the analog input (fault, e.g. short circuit)

Bit 0 Break at Input 1
Bit 1 Reversed polarity at Input 1
Bit 2 Short circuit at Input 1
Bit 3 Not used
Bit 4 Break at Input 2
Bit 5 Reversed polarity at Input 2
Bit 6 Short-circuit at Input 2
Bit 7 Not used
Bit 8 Break at Input 3 (only KS 90)
Bit 9 Reversed polarity at Input 3 (only KS 90)
Bit 10 Short-circuit at Input 3 (only KS 90)
Bit 11 Not used

7 ohnE

Signa

Name	r/w	Adr. Integer	real	Typ	Value/off		Description	
St.Di	r	base	253	33274	M ask	$0 \ldots 0$	\square	Status of the digital inputs or of push-buttons (binary coded).
		1 dP	8445					
		2 dP	16637					
		3 dP	24829					

Bit 0 Input 1
Bit 1 Input 2
Bit 2 Input 3
Bit 8 Status of ' F ' key Bit 9 Status of 'A/M ' key Bit 10 Status of 'Sel' key Bit 11 Status of 'Down' key Bit 12 Status of 'Up' key Bit 13 Status of 'Loc' key

F.Di	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	303 8495 16687 24879	33374	M ask	0...0 \square	Forcing of digital inputs. Forcing involves the external operation of at least one input. The instrument takes over this input value (preset value for inputs from a superordinate system, e.g. for a function test.)
Bit 0 Forcing of digital input 1 Bit 1 Forcing of digital input 2 Bit 2 Forcing of digital input 3 Bit 3 Forcing of digital input 4 Bit 4 Forcing of digital input 5							
F.Do	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 304 \\ 8496 \\ 16688 \\ 24880 \end{array}$	33376	M ask	0... $0 \square$	Forcing of digital outputs. Forcing involves the external operation of at least one output. The instrument has no influence on this output (use of free outputs by superordinate system).

8 ohnE1

Sfona							
Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
InP	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 232 \\ 8424 \\ 16616 \\ 24808 \end{array}$	33232	Float	$\begin{array}{ll} -19999 \ldots 9999 \\ a & \square \end{array}$	M easurement value after the measurement value correction (e.g. with offset or 2-point correction, and scaling).
InP.r	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 240 \\ 8432 \\ 16624 \\ 24816 \end{array}$	33248	Float	$\begin{array}{\|ll\|} \hline-19999 \ldots 9999 & \square \\ a \end{array}$	M easurement value before the measurement value correction (unprocessed).
F.Inp	r / w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 300 \\ 8492 \\ 16684 \\ 24876 \end{array}$	33368	Float	$\begin{array}{ll} -19999 \ldots 9999 \\ \mathrm{a} \end{array} \quad \square$	Forcing the value for an analog input INP. Forcing involves the external operation of an input. The instrument takes over the value at this input like a measurement value (preset value for inputs from a superordinate system, e.g. for a function test.)

9 ohnE3

Signa								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
F.Out1	r/w	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 305 \\ 8497 \\ 16689 \\ 24881 \end{array}$	33378	Float	0... 120	\square	Forcing value of the analog output. Forcing involves the external operation of an output, i.e. the instrument has no influence on this output. (Used for the operation of free outputs e.g. by a supervisory PLC.)

10 othr

Addr	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 181 \\ 8373 \\ 16565 \\ 24757 \end{array}$	33130	Int	1... 247	\square	Address on the interface (only visible with OPTION)
PrtY	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 182 \\ 8374 \\ 16566 \\ 24758 \end{array}$	33132	Enum	Enum_Parit		Parity of data on the interface (only visible with OPTION). Simple possibility of checking that transferred data is correct.
0 No parity, with 2 stop bits.								
						1 even parity		
						odd parity		
						3 no parity (1 stop bit)		

dELY	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 183 \\ 8375 \\ 16567 \\ 24759 \end{array}$	33134	Int	0... 200	\square	Response delay [ms] (only visible with OPTION). Additional delay time before the received message may be answered on the M odbus. (M ight be necessary, if the same line is used for transmit/receive.)
Unit	r/w	base 1dP 2 dP 3dP	$\begin{array}{r} 170 \\ 8362 \\ 16554 \\ 24746 \end{array}$	33108	Enum	Enum_Unit		Physical unit (temperature), f.e. ${ }^{\circ} \mathrm{C}$
0 without unit								
$1 \quad{ }^{\circ} \mathrm{C}$								
$2{ }^{\circ} \mathrm{F}$								

10 othr

dISP	r/w	base 1 dP 2 dP 3 dP	172 8364 16556 24748	33112	Enum	Enum_diSP5		Format of the measured value display, in digits. In order to ensure a steady display, the value of the last displayed digit is defined by a multiple of the total selected number of display digits. Example with a resolution of 2 decimals:The measured value '1.234' is displayed as 1.23; with a 2-digit display it is 1.24; with a 5 -digit display it is 1.25 , and with 10 digits it is 1.20 .
						Full display resolution.		
						2 Display resolution $=2$ digits		
						Display resolution = 5 digits		
						Display resolution $=10$ digits		
						Display resolution $=20$ digits		
						Display resolution $=50$ digits		
						7 Display resolution $=100$ digits		
C.dEL	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 184 \\ 8376 \\ 16568 \\ 24760 \end{array}$	33136	Int	0... 200	\square	For both interfaces, M odbus only. Additional acceptable delay time betw een 2 received bytes, before "end of message" is assumed. This time is needed if data is not transmitted continousely by the modem.
FrEq	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 150 \\ 8342 \\ 16534 \\ 24726 \end{array}$	33068	Enum	Enum_FrEq		Switchover of the applied mains frequency $50 / 60 \mathrm{~Hz}$, thereby better adaptation of the input filter for hum suppression.
						$0 \quad M$ ains frequency is 50 Hz .		
						1 M ains frequency is 60 Hz .		

Sto								
Name	r/w	Adr. I	ger	real	Typ	Value/o		Description
E. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 210 \\ 8402 \\ 16594 \\ 24786 \end{array}$	33188	Enum	Defect		Err 1 (internal error) Contact Service.
						0	No f	(Reset).
						2	The	defective.

10 othr

- Stignal

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
E. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 211 \\ 8403 \\ 16595 \\ 24787 \end{array}$	33190	Enum	Problem		Err 2 (internal error, resettable) (As a process value via fieldbus interface not writable!)
						$0 \quad \mathrm{~N}$		resetting possible (Reset).
						1 A fault has occurred and has been stored.		

10 othr

Signa

10 othr

Signal

Lim. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 225 \\ 8417 \\ 16609 \\ 24801 \end{array}$	33218	Enum	Limit		Limit value 3 exceeded. Hint for trouble-shooting: check the process. (As a process value via fieldbus interface not writable!)
						0	No fault,	resetting of the limit value alarm possible (Reset).
						1	The limit value has been exceeded, and the fault has been stored.	
							The limit limits.	has been exceeded; the monitored (measurement) value is outside the set

InF. 2	r/w	base 1 dP 2dP 3 dP	227 8419 16611 24803	33222	Enum	Switch		M essage from the switching cycle counter that the preset no. of switch cycles for this maintenance period has been reached. The cycle counter for the maintenance period is reset when this message is acknowledged. Counting the switching cycles is used for preventive maintenance. - Acknow ledge the error to reset it. (As a process value via fieldbus interface not writable!)
0 No error message, resetting of the switching cycle counter possible (Reset). 1 Set limit of the switching cycle counter (maintenance period) has been reached: please acknow ledge.								

11 Out. 1

ConF

Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
0.Act	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4150 \\ 12342 \\ 20534 \\ 28726 \end{array}$	41068	Enum	Enum_OAct	Operating sense of the switching output. Direct: Active function (e.g. limit value) switches the output ON; Inverse: Active function (e.g. limit value) switches the output OFF
0 direct / normally open							
						1 inv	inverse / normally closed

Lim. 3	r / w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4155 \\ 12347 \\ 20539 \\ 28731 \end{array}$	41078	Enum	Enum_Lim3	Output function: Signal limit 3
						0 not	

11 Out. 1

Signal

F.Dol	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4181 \\ 12373 \\ 20565 \\ 28757 \end{array}$	41130	Enum	Enum_Ausgang	Forcing of this digital output. Forcing involves the external operation of an output. The instrument has no influence on this output (use of free outputs by superordinate system).
0 off							
						1 on	

12 Out. 2

ConF

Name	r/w	Adr. Integer		real	Typ Enum	Value/off	Description
0.Act	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4250 \\ 12442 \\ 20634 \\ 28826 \end{array}$	41268		Enum_OAct	Operating sense of the switching output. Direct: Active function (e.g. limit value) switches the output ON; Inverse: Active function (e.g. limit value) sw itches the output OFF
0 direct / normally open							
						1 inverse / normally closed	

Y. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4251 \\ 12443 \\ 20635 \\ 28827 \end{array}$	41270	Enum	Enum_Y1	Output function: Controller output Y1
						0 n	not active
							This output provides the controller output Y1.
Lim. 1	r/w	base	4253	41274	Enum	Enum_Lim1	Output function: Signal limit 1
		1 dP	12445				
		2dP	20637				
		3 dP	28829				
0 not active							
						1 The output is activated by an alarm from limit value 1.	

Lim. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4254 \\ 12446 \\ 20638 \\ 28830 \end{array}$	41276	Enum	Enum_Lim2	Output function: Signal limit 2
0 not active 1 The output is activated by an alarm from limit valu							

12 Out. 2

ConF

Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
Lim. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4255 \\ 12447 \\ 20639 \\ 28831 \end{array}$	41278	Enum	Enum_Lim3	Output function: Signal limit 3
0 not active							

FAi. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4262 \\ 12454 \\ 20646 \\ 28838 \end{array}$	41292	Enum	Enum_FAi1	Output function: Signal IN P1 fault. The fail signal is generated, if a fault occurs at the analog Input INP1.
0 not active							
						1 The output sends the error message 'INP1 fault'.	

Signa

F.Do2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4281 \\ 12473 \\ 20665 \\ 28857 \end{array}$	41330	Enum	Enum_Ausgang	Forcing of this digital output. Forcing involves the external operation of an output. The instrument has no influence on this output (use of free outputs by superordinate system).
						$\begin{array}{ll} 0 & \text { off } \\ 1 & \text { on } \end{array}$	

13 Out. 3

13 Out. 3

ConF

Name	r/w	Adr. In	teger	real	Typ	Value/off	Description
0.Act	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4350 \\ 12542 \\ 20734 \\ 28926 \end{array}$	41468	Enum	Enum_OAct	Operating sense of the switching output. Direct: Active function (e.g. limit value) switches the output ON; Inverse: Active function (e.g. limit value) sw itches the output OFF
0 direct / normally open							
						1 inverse / normally closed	

Lim. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4353 \\ 12545 \\ 20737 \\ 28929 \end{array}$	41474	Enum	Enum_Lim1	Output function: Signal limit 1
0 not active 1 The output is activated by an alarm from limit value 1.							

Lim. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4354 \\ 12546 \\ 20738 \\ 28930 \end{array}$	41476	Enum	Enum_Lim2	Output function: Signal limit 2
0 not active 1 The output is activated by an alarm from limit value 2.							

Lim. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4355 \\ 12547 \\ 20739 \\ 28931 \end{array}$	41478	Enum	Enum_Lim3	Output function: Signal limit 3
						0 not active	

Out. 0	r/w	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 4371 \\ 12563 \\ 20755 \\ 28947 \end{array}$	41510	Float		\square	Lower scaling limit of the analog output (corresponds to 0\%). If current and voltage signals are used as output values, the display can be scaled to the output value in the Parameter Level. The output value of the lower scaling point is indicated in the respective electrical unit (mA / V).

13 Out. 3

ConF

Signa

Name	r/w	Adr. Integer real	Typ	Value/off	Description		
Out1	r	base	4380	41528	Enum	Enum_Ausgang	Status of the digital output
		$1 d \mathrm{dP}$	12572				
		2 dP	20764				
		3 dP	28956				

F.Do1	r / w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4381 \\ 12573 \\ 20765 \\ 28957 \end{array}$	41530	Enum	Enum_Ausgang	Forcing of this digital output. Forcing involves the external operation of an output. The instrument has no influence on this output (use of free outputs by superordinate system).
0 off							
1 on							

F.Out1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4382 \\ 12574 \\ 20766 \\ 28958 \end{array}$	41532	Float	0... 120	\square	Forcing value of the analog output. Forcing involves the external operation of an output, i.e. the instrument has no influence on this output. (Used for the operation of free outputs e.g. by a supervisory PLC.)

14 SEtP

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
SP.EF	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3170 \\ 11362 \\ 19554 \\ 27746 \end{array}$	39108	Float	$\begin{array}{ll} -19999 \ldots . . .9999 \\ \mathrm{a} \end{array} \quad \square$	Effective setpoint. The value reached at the end of setpoint processing, after taking W 2, external setpoint, gradient, boost function, programmer settings, start-up function, and limit functions into account. Comparison with the effective process value leads to the control deviation, from which the necessary controller response is derived.
SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3180 \\ 11372 \\ 19564 \\ 27756 \end{array}$	39128	Float	$\begin{array}{ll} -19999 \ldots 9999 & \square \\ \mathrm{a} \end{array}$	Setpoint for the interface (without the additional function 'Controller off'). SetpInterface acts on the internal setpoint before the setpoint processing stage. Note: The value in RAM is always updated. To protect the EEPROM, storage of the value in the EEPROM is timed (at least one value per half hour).

15 Tool

Subject to alterations without notice Änderungen vorbehalten
Sous réserve de toutes modifications
© PMA Prozeß- und Maschinen-Automation GmbH
P.O.B. 310 229, D-34058 Kassel, Germany

Printed in Germany 9499-040-70111 (02/2005)

