PMA Prozeß- und Maschinen-Automation GmbH

rail line Field bus coupler RL DP

SIMATIC® is a registered trademark of Siemens AG STEP® is a registered trademark of Siemens AG

is a registered trademark of the PROFIBUS user organization (PNO) BluePort [®] and BlueControl [®] are registered trademarks of PMA Prozeß- und Maschinen-Automation GmbH SyCon® is a registered trademark of Hilscher Gesellschaft für Systemautomation GmbH

Legend of symbols:

General information

<u>profi</u>°

ിത്തിട്

\land General warning

Caution: ESD-hazarded components

© 2004-2005 PMA Prozeß- und Maschinen-Automation GmbH • Printed in Germany All rights reserved. No part of this document may be reproduced or published in any form or by any means without prior written permission from the copyright owner.

A publication of PMA Prozeß- und Maschinen Automation Postfach 310229 D-34058 Kassel Germany

Content

1.	Gen 1.1 1.2	eral
	1.3	Additional information
2.	Safe 2.1 2.2 2.3	ty hints. .
3.	Quic	k entry
4.	Com	missioning
	4.1 4.2 4.3	Hints for installation 10 Dimensions 10 Mounting 11 4 3 1 Dismounting
	4.4	Electrical connections
		4.4.2Energization via RL PWR power supply module.124.4.3Bus structure.134.4.4Connector134.4.5Cable layout134.4.6Screening.14
	4.5	4.4.7 Terminating resistors 14 PROFIBUS settings 15 4.5.1 Bus address 15 4.5.2 Communication parameters 15
	4.6	Displays
5.	Syst	em design
	5.1	System structure
	5.2	General system structure
6.	Proc	ess data transmission
	6.1 6.2 6.3	Selectable process data modules.22Predefined objects (A.x modules).226.2.1 Module A.1: Parameter channel.226.2.2 Module A.2: Data module : write order enabling.22Freely selectable transfer object (analog modules).236.3.1 Process data module "without data".23
		6.3.2Process data modules in integer format.236.3.3Process data modules in floating point format246.3.4Example: specification of the number of process data24

7.	Us	er pa	rameter	setting											. 25
		7.1	Paramet 7.1.1 7.1.2 7.1.3	ter setting for DPV0 master System-wide parameter setting Function module parameter set Fail-safe	 J ting 	· · · ·	· · ·	· · · ·	· · · · · · ·	· · · ·	· · ·	· · · · · ·	· · · · · ·	· · · · · ·	. 25 . 25 . 25 . 27
		7.2	7.1.4 Paramet	Example: module selection	· · · ·	 	 	· · ·	· · · ·	 	· ·	 	· ·	· ·	. 28 . 29
	8.	PRO	FIBUS D	P diagnosis information											. 30
		8.1 8.2	Standar Device-s	d diagnosis message	· ·	 	 	 	· · · ·	 		· ·	· ·	· ·	. 30 . 31
	9.	Engi	neering	via PROFIBUS											. 32
		9.1	BlueCon	$trol^{ embed{minipage}} via PROFIBUS-DPV1 $. 32
			9.1.1	CIF card settings											. 33
		0.0	9.1.2	BlueControl® settings							• •	• •		• •	. 33
		9.Z	HINTS TO	r DP master set-up	• •				• •			• •	• •	• •	. 34
	10	. Quic 10.1 10.2	k entry Example Example 10.2.1 10.2.2	e: SIMATIC [®] S7	••• ••• •••	••• ••• •••	• • • • • • •	• • • •	· · ·	• • • •	• • •	••• ••• ••• •••	••• ••• •••	••• ••• •••	. 35 . 35 . 38 . 38 . 38 . 41
	11	Add	ress are	as and -formats											. 42
		11.1 11.2 11.3 11.4 11.5	Area de Special Compos Internal Annex o 11.5.1	finitions	· · · · · · ·	· · · · · ·	· · ·	 	· · · · · · ·	· · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	. 42 . 42 . 43 . 43 . 44 . 44
			11.5.2 11.5.3	Universal controller KS 45 Temperature limiter TB 45	· · · ·	 	· · ·	· · ·	· · · ·	· · ·	· · · ·	· ·	· ·	 	. 46 . 49
	12	Blue 12.1 12.2 12.3 12.4	Control Defining Compari Viewing Processi 12.4.1	engineering tool		• • • • • •	• • • •	· · · ·	• • • • • • • •	• • • • • • • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • •	. 50 . 50 . 52 . 52 . 53 . 53
	13	Inde	х												. 54

General

Thank you very much for buying a rail line series device. This document describes the PROFIBUS interface functions of field bus coupler RL DP, which is called bus coupler in the following description, and the system capability of the various module versions of the rail line series (Cl45-1xx-2.., KS45-1xx-2..., TB45-1xx-2...), called "function module" in the following description. The term " device" applies to both bus coupler and function modules.

Bus couplers with a PROFIBUS interface permit the transmission of process, parameter and configuration data. Field bus connection is via a sub-D socket at the top of the bus coupler. The serial communication interface facilitates connections to supervisory systems, visualization tools, etc.

Another standard interface is the non-bussable 'BluePort®' front-panel (PC) interface. It is used for direct connection of the 'BlueControl®' tool which runs on a PC.

Communication on the PROFIBUS-DP is according to the master/slave principle. The bus coupler is always slave.

The most important features of the bus connection with their physical and electrical properties are:

٠ Network topology

Linear bus, with bus termination at both ends.

- Transfer medium screened, twisted 2-wire copper cable
- Cable length (without repeater) ٠ Cable length dependent on transfer rate, max. 1200m
- **Transfer rates**

The following transfer rates are supported: 9,6 ... 12000 kBit/s

Physical interface

RS 485 via sub-D connector; connections can be made on site

• Addressing

1 ... 99

1.1 References

Additional information on the PROFIBUS protocol:

- [1] **PROFIBUS** specifications
 - http://www.profibus.com

Other documentations of rail line series s:

Universal transmitter UNIFLEX CI 45 [3]

	 Data sheet CI 45 	9498 737 48313
	 Operating note CI 45 	9499 040 71441
	 Operating manual CI 45 	9499 040 71711
[4]	Universal controller KS 45	
	 Data sheet KS 45 	9498 737 48513
	 Operating note KS 45 	9499 040 71541
	 Operating manual KS 45 	9499 040 71811
[5]	Temperature limiter TB 45	
	 Data sheet TB 45 	9498 737 48413
	 Operating note TB 45 	9499 040 71641
	 Operating manual TB 45 	9499 040 71911

1.2	GSD file
i	The GSD file is available as a standard file with English texts (PMA_093A.gsd). The current version can be downloaded from item Software on our homepage www.pma-online.de .
1.3	Additional information
	Information on bus coupler and function module parameter addresses is given in documentation 9499-040-78111.

Safety hints

This device was built and tested in compliance with VDE 0411-1 / EN 61010-1 and was shipped in safe condition. The device meets European guideline 89/336/EEC (EMC) and is provided with the CE-marking.

The device was tested before delivery and has passed the tests stipulated in the test plan. To maintain this condition and to ensure safe operation, the user must follow the hints and warnings given in this operating manual and operate the device in compliance with the information provided in this manual.

Warning

The device is provided exclusively for use as a measuring and control unit in technical systems.

Warning

If the device is damaged to an extent that safe operation is not possible, it must not be taken into operation.

ELECTRICAL CONNECTIONS

The electrical connections must conform to local standards (e.g. VDE 0100). The input leads must be kept separate from signal and mains leads.

A circuit breaker or a power switch must be provided for the device and marked accordingly in the installation. The circuit breaker or power switch must be installed near the device and should be easily accessible for the operator.

COMMISSIONING

Before device switch-on, ensure that the rules given below were followed:

- Ensure that the supply voltage corresponds to the specification on the type label.
- All covers required for contact safety must be fitted.
- Before device switch-on, check, if other equipment and/or facilities connected in the same signal loop is / are not affected. If necessary, appropriate protective measures must be taken.
- The device may be operated only when mounted in its enclosure.
- The temperature limits specified for operation of the device must be met before and during operation.

Warning

During operation, the ventilation slots of the housing must not be covered.

Warning

The measurement inputs are designed for measurement of circuits which are not connected directly with the mains supply (CAT I). The measurement inputs are designed for transient voltage peaks up to 800V against PE.

SHUT-DOWN

For permanent shut-down, disconnect the instrument from all voltage sources and protect it against accidental operation.

Before instrument switch-off, check that other equipment and / or facilities connected in the same signal loop is / are not affected. If necessary, appropriate measures must be taken.

2.1 Maintenance, modification and repair

The devices need no particular maintenance.

No operable controls are mounted inside the device, i.e. the operator must not open it.

Modification, maintenance and repair may be carried out only by trained, authorized persons. For this purpose, the user is invited to contact the PMA service.

Warning

When opening the devices, or when removing covers and components, live parts or terminals can be exposed.

Caution

When opening the devices, electrostatically sensitive components can be exposed.

The PMA service address and contact information are as given below:

PMA Prozeß- und Maschinen-Automation GmbH Miramstraße 87 D-34123 Kassel

Phone +49 (0)561 / 505-1257 Fax +49 (0)561 / 505-1357 e-mail: mailbox@pma-online.de

Cleaning

Housing and front panel of the device can be cleansed using a dry, lint-free cloth.

2.3

Spare parts

The following accessories are permitted as spare parts for the device:

Description	Order no.	
Connector set with screw terminals	9407-998-07101	
Connector set with spring clamp terminals	9407-998-07111	
Bus connector for fitting in top-hat rail	9407-998-07121	

Quick entry

3

For installing a *rail line* system, please, proceed as follows:

- → Determine system concept and function modules.
- → Determine the function module order behind the bus coupler.
- → Mount a bus connector for each module on the top-hat rail and push them together.
- → Set the PROFIBUS address on the bottom of the bus coupler.
- → To mount the bus coupler, snap it onto the left bus connector.
- → Mount the function modules analogously in the planned order.
- → Connect the bus coupler to the supply voltage.
- Set a unique address for each function module, which should start with 1 for the module next to the bus coupler, followed by module no. 2, etc. Please, don't leave an address gap. Adjusting the addresses can be done via front-panel keyboard or BlueControl[®] engineering tool.
- → Write the engineering for each individual function module. Determine which data should be read and / or written via the field bus (menu Bus data (read) / Bus data (write)). Note the order of selected data.
- → Make the function module wiring.
- Configure the bus coupler with the order of fitted function modules. Please, specify the actually fitted device types exactly.

This can be done via BlueControl® or via the master tool for the PROFIBUS master.

- During configuration in the master tool (via GSD file), the selected slot position determines the required allocated function module address.
- → Load the bus configuration into the PROFIBUS master.
- Connect the PROFIBUS cable with the device; take care to include the required bus terminating resistors.
- → Start the data exchange with the PROFIBUS master !

The bus coupler dimensions are shown in the following drawing. For the function module data, see the relevant operating manuals.

Fig. 1: Dimension

99 (3,90")

Mounting

4.3

Connection between bus coupler and function modules is via bus connectors, which snap onto the top-hat rail. Several devices are mounted side by side with high packing density. The bus links between the devices are made directly via the bus connectors.

The instruments are provided for vertical mounting on 35 mm top-hat rails to EN 50022.

If possible, the place of installation should be exempt of vibration, aggressive fluids (e.g. acid, lye), liquids, dust or other suspended matters.

Instruments of the *rail line* family can be mounted directly side by side. For mounting and dismounting, the min. distance above and below the instrument from other equipment should be 8 cm.

For installation of the bus connection, proceed as follows:

- 1 Snap on the bus connectors (delivered with the device) onto the top-hat rail
- 2 For high-density mounting, push the bus connectors together.
- 3 Clip the instruments onto the top-hat rail via the bus connectors

- the internal system bus connection is ready!

Please, mount the bus coupler in the leftmost position and fit the function modules right of the bus coupler in the required order.

rail line instruments do not contain parts for which maintenance is compulsory and need not be opened by the customer.

Warning

A field bus coupler can energize max. 16 function modules. For connecting a higher number of modules RL PWR power supply modules must be used.

4.3.1

Dismounting

Dismounting is in the inverse order of the steps described above.

4.4 Electrical connections

4.4.1 Bus coupler supply voltage

A system comprising bus coupler and one or several function modules is energized centrally via the bus coupler. Central energization reduces the wiring expenditure considerably.

Fig. 3: Bus coupler energy supply conn. buscoupler

Warning

Energization at the function modules is not permissible.

A bus coupler can energize max. 16 function modules. For extension possibilities, see chapter 4.4.2.

4.4.2 Energization via RL PWR power supply module

Power supply module RL PWR is used for energization of function modules with system interface via the bus connector in the top-hat rail.

For connecting a higher number of function modules to the bus coupler than permissible for energization, additional power supply modules must be used.

Applications:

- Supplementary energization of additional function modules
- Repartition to different installation levels (e.g. two rows in a control cabinet)
- Construction of separate potential levels
- A power supply module can energize up to 16 function modules.

Fig. 4: Energy supply connection

Warning

Energ. at the function modules is not permitted.

\triangle

Warning

High-density mounting with other partial systems is not permissible.

Cascade connection of power supply modules is not permissible (see above).

Fig. 5: Ex: power supply module

4.4.3 Bus structure

The bus is a two-wire RS 485 cable.

All bus sharing RS 485 units are connected in parallel to signals RxD/TxD-N (Data A) and RxD/TxD-P (Data B).

The bus cable characteristics are specified in IEC 61158. Cable type A is suitable for transfer rates up to 12 Mbit/s. A twisted and screened 2-wire cable must be used.

Hints:

• Mount terminating resistors across Data A and B at the cable end. For procedure, see chapter 4.4.7.

2 For screening, see chapter 4.4.6.

4.4.4

Connector

Field bus connection is via a "standard" PROFIBUS-DP connector. The connector is a sub-D socket to IEC 61158. Connection must be done by the customer.

Fig. 7 Bus connecting plug Anschluss / connection:

PROFIBUS-DP

4.4.5

Cable layout

For connecting the field instruments, suitable bus cables for the application must be used. The wiring must comply with the general hints and regulations (e.g. VDE 0100):

- Cable layout in buildings (inside and outside cabinets)
- Cable layout outside buildings
- Potential compensation
- Cable screening
- Measures against interference voltages
- Length of tap line

In particular, the following information must be taken into account:

- With RS 485 technology, max. 32 field units can be connected in a segment at a bus cable. Several segments can be coupled by means of repeaters.
- The bus topology should be a line of max. 1000m length per segment. Extension by means of repeaters is permissible.
- The bus cable connection must be a "daisy chain" between field instruments rather than star-shaped.
- If possible, tap lines should be avoided to prevent reflections causing communication trouble. With higher transfer rates, tap lines are not permissible.
- The general hints for low-interference signal and bus cable wiring are applicable (see operating note "EMC General information" (9407-047-09118)).
- To increase the transfer safety, pairwisely twisted and screened bus cables can be used.

4.4.6	Screening
	The type of screening connection is dependent mainly on the expected interference.
	• For suppression of electric fields, one end of the screening must be connected to earth. Always realize this
	measure at first.

- However, suppression of interference due to an alternating magnetic field is possible only, when the both ends
 of the screening are connected to earth. With earth circuits, however, note the screening effect is reduced by
 galvanic interference on the reference potential.
- If several devices are linked to a single bus, the screen must be connected at each device, e.g. by means of screen clamps.
- Short distance bus screening must have a large-surface, low-resistance connection to a central protective earth, e.g. via screening terminals

4.4.7 Terminating resistors

The PROFIBUS terminating resistors must be fitted at the end of each bus cable, construction acc. to IEC 61158. We recommend using commercially available PROFIBUS connectors with integrated terminating resistors.

4.5 PROFIBUS settings

Bus address

4.5.1

The address of a bus coupler for bus communication must be adjusted via two rotary selector switches at the bottom of the unit:

Range:

• 01 ... 99

Each instrument in a PROFIBUS system must have a unique address.

Fig. 8

Warning

When defining the device address, note that allocation of the same address to two instruments is not permissible, because it is susceptible of causing faulty behaviour of the overall bus. In this case, the bus master communication with the connected instruments is not possible.

4.5.2 Communication parameters

Transfer rate / cable length

The Baudrate is a measure for the transfer rate. The permissible cable length is dependent on this rate. The bus coupler supports the following transfer rates:

Transfer rate		Max. cable length
9,6 / 19,2 / 45,45 / 93,75	kBit/s	1200 m
187,5	kBit/s	1000 m
500	kBit/s	400 m
1,5	MBit/s	200 m
3/6/12	MBit/s	100 m

The transfer rate is selected automatically by the bus master.

The transfer rate setting of all bus sharing units must be equal.

Process data length

The max. length of a process data message can be 244 bytes (read and write).

4.6 Displays

Five bus coupler indicator LEDs indicate various operating statuses.

			Signification		
	PROFIBUS-DP		System bus st	atus indicator LED	
9		1	off:	off	
0	err (PmA)	•	blinks:	searching modules	
			on:	communication active	
4—		2	Diagnostic inc	licator LED	
	Conf	2	on:	module error, alarm	
6—	-BS S		Device status	indicator LED *	
6—	-BF D-2		green:	ok	
		3	yellow:	initialization	
0—		J	yellow blinking:	configuration difference	
			red:	no configuration	
			red blinking:	module failure	
		4	no function		
	ADDR		Field bus statu	is indicator LED	
	+ + PWR L L	Б	off:	no communication	
		J	blinks:	Wait / Param / Config / CPU Stop	
			on:	data exchange	
			Field bus teleg	gram error LED	
		6	off:	no error	
		U	blinks:	parameter error	
			on:	configuration error	
		7	PC connection for engineering tool		

* " green- yellow- red-off" alternating display: internal error status

5 System design

Up to 16 function modules can be connected and energized at a bus coupler. System extension is possible by using power supply modules:

- Up to 62 function modules can be addressed logically by a bus coupler.
- Up to 4 installation levels can be built up.
- The max. permissible extension is 10 m.

5.1 System structure

Using power supply modules offers many advantages:

- The number of function modules connectable to a bus coupler can be extended.
- The function modules can be distributed to different levels in the control cabinet.
- A potential-isolated energy supply is possible.

Versorgung / Power supply

 (\mathbf{i})

The overall system length including cables must not exceed 10 m. Max. 3 m cable length between two groups is permissible.

5.1.1

Hints for connection

For connecting the function modules energized by the bus coupler and the function modules energized by the power supply module, proceed as follows:

- Insert a connector (e.g. 9407-998-07141) on the right side of the group with the bus coupler into the bus connector in the top-hat rail.
- Insert a connector (e.g. 9407-998-07131) on the left side of the group with the power supply module into the bus connector.
- Use twisted and screened two-wire bus cable.
 Connect conductor 1 with the lower contact S5 and conductor 2 with contact S4.
- Terminate the system bus with a terminating resistor LT = 100. For this, insert a connector (e.g. 9407-998-07141) on the right side of the last group with a power supply module into the bus connector. Connect the resistor across terminals S4 - S5.

Warning

Don't interconnect a bus coupler and one or several power supply modules via bus connector. Connections via contacts S1 to S3 can lead to damage of the connected devices!

5.1.2 **Operation without bus coupler**

Power supply module RL PWR can be used also for energization of function modules with system interface, if the use of a bus coupler is planned only for the future, or if only a single function module version may be available due to reduced stock-keeping.

General system structure

5.2

Please, follow the guidelines and instructions for building up a communication system given by the master manufacturer.

5.2.1 Minimum equipment of a PROFIBUS system

A PROFIBUS system comprises the following minimum equipment:

- a bus master, which controls the data communication,
- one or several slaves, which provide data on request by the master,
- the transfer medium, consisting of bus cable and bus connector for connecting the individual bus sharing units, one or several bus segments which are connected by repeaters.

5.2.2 Maximum equipment of a PROFIBUS system

Fig. 11

A bus segment comprises max. 32 (active and passive) field instruments. The maximum possible number of slaves which can be operated at a PROFIBUS master over several segments is determined by the internal master memory structure. Therefore you should get information on the master capacity when planning a system. The bus cable can be opened at any point to include another unit by adding a bus connector. At the segment end, the bus cable can be extended up to the predefined segments lengths. The length of a bus segment is dependent on the adjusted transfer rate, which is determined mainly by system constellation (segment length, distributed inputs/outputs) and required scanning cycles Abfragezyklen of individual units. The selected transfer rate must be equal for all bus units.

PROFIBUS units must be connected in line structure.

Structure

A PROFIBUS system can be extended by using repeaters for connection of more than 32 units, or for longer distances than defined according to transfer rate.

A fully equipped PROFIBUS system can include max. 125 units with addresses 1 ... 125. Each repeater reduces the maximum number of units in a segment. As a passive unit, a repeater dos not have a PROFIBUS device address. However, its input circuitry is an additional load for the segment due to bus driver current consumption. But a repeater is without effect on the overall number of units connected on the bus. The maximum number of repeaters which can be connected in series may vary dependent on manufacturer. For this reason, you should get information on possible limitations from the manufacturer when projecting a system.

5.2.3 Wiring inside buildings

The following hints for cable layout are applicable to twisted-pair cables with screen. The screening improves the electromagnetic compatibility.

Depending on requirements, the one or both ends of the cable screen must be connected to a central earth point (PE) by means of low-impedance connections with a large surface, e.g. screen clamps. When installing a repeater or field unit in a control cabinet, the cable screen should be connected to an earth rail mounted as close as possible to the cable entry into the cabinet.

The screening must be continued up to the field instrument and connected with the conductant housing and/or metal connector. Ensure that the earth potential of the instrument

housing and of the control cabinet accommodating the field instrument is is equal due to large-surface metal contact. Mounting a screening rail on a painted surface is without effect.

By observing these measures, high-frequency interference will be grounded reliably via the cable screens. Should external interference voltages still reach the data lines, the voltage potential will be raised symmetrically on both lines, so that in general, no destructive voltage differences can arise. Normally, a shift of the ground potential by several volts will not have an effect on reliable data transmission. If higher voltages are to be expected, a potential balancing conductor with a minimum cross-section of 10 mm² should be installed parallel to the bus cable, with connections to the reference ground of every field unit. In case of extreme interference, the bus cable can be installed in a metal conduit or channel. The conduit tube or the channel must be earthed at regular distances.

The min. distance between bus cable and other leads carrying more than 60 V must be 20 cm. The bus cable must be kept also separate from telephone cables and cables leading into hazardous areas. In these cases, we recommend installing the bus cable in a separate cable duct.

When installing a cable duct, only conductant materials connected regularly with the reference potential should be used . Mechanical stress and obvious damage must of the bus cables must be avoided. Unless this is possible, special protective measures, e.g. installation in a pipe, etc. are required. such aslf thisDie Buskabel sind keiner mechanischen Beanspruchung oder offensichtli

Floating installation

If the installation must be floating (no earth connection) for certain reasons, the device reference ground must only have a high-impedance connection to earth (e.g. an RC combination). The system will then find its own earth potential. When connecting repeaters for the purpose of linking two bus segments, a floating installation is recommended, to prevent possible potential differences being transferred from one segment to the next.

Process data transmission

For flexible realization of the requirements on transfer values, memory capacity and transfer rate, the user can compose the process data transmission from a predefined selection of process data modules. This configuration is by means of the relevant bus master configuration tool.

In addition to the cyclically transmitted process data, parameter transmission on request via PROFIBUS-DP is also possible (see also chapter 1.3).

Process data and selected parameter data are written and read cyclically.

(f) Transmitted values are taken over by the function module only in case of value change.

Data format

Values such as process values and setpoints can be transmitted in floating point format or in 16-bit FixPoint format with one digit behind the decimal point (selectable).

With FixPoint transmission, the following marginal conditions should be taken into account: For data defined as floating point values in the device, the following rules are applicable:

- The values are multiplied by factor 10.
- Example: 30.0 °C becomes 300.
- The transferable range is within -3000.0 and +3200.0; transmitted values beyond this range are not accepted.
- With read data out-of-range, value -3276.8 is transmitted (as an integer value -32768).
- The transmitted switch-off value is 32000 with FixPoint format and -32000.0 with floating point format.

() For data which are defined as integer values in the device, conversion is omitted.

Parameter channel

Process, parameter and configuration data are accessible additionally via the parameter channel. These data are transmitted over several cycles on request.

6

6.1 Selectable process data modules

The cyclically transmitted process data are determined by the user during bus configuration. Predefined modules with defined content / data signification (A modules) and freely defined modules as space-keepers are available. The contents are determined via the device engineering.

6.2 Predefined objects (A.x modules)

A.x modules "Data module" and "Parameter channel" are objects with pre-defined contents.

A.x modules may be called up only once during bus parameter setting.

6.2.1

Module A.1: Parameter channel

This process data module for DPVO operation can be used for acyclical access to the rail line system parameters.

Parameter channel	Module ID: F3hex /	' 243dec	
Read	Byte	Write	Byte
Response data	8	Request data	8

For a detailed description, see documentation 9499-040-78118.

During DPV1 operation, this access is not necessary.

The parameter channel should be used, when the relevant bus master can execute only a DPVO data communication and more than 15 data have to be read or written by a function module.

6.2.2 Module A.2: Data module : write order enabling

This module is used to enable process value write operations. When using this module

- the PROFIBUS does not take over write data with value 0;
- the write values transmitted via the PROFIBUS are taken over with value 1;
- with change from 0 to 1 all write values are written into the device again by the PROFIBUS.

Process data	Module ID: 20hex / 32dec		
Read	Byte	Write	Byte
	0		1

() Unless module A.2 is used, the device will always store valid write data.

6.3 Freely selectable transfer object (analog modules)

A *rail line* function module is defined with each entry of a process data module into the hardware configuration. The number of data to be transmitted cyclically on the PROFIBUS is determined by selecting the process data module.

The content of transmitted data is selected in the engineering of the individual function module by means of the 'BlueControl[®]' engineering tool. Per module, max. 15 parameters and signals for read and write are available. The order of transmission is determined by the position.

The process data modules can be selected up to the limit determined by memory space or number of permitted modules.

- max. input length of process data: 244 bytes
- max. output length of process data: 244 bytes
- max. number of modules: 62
- max. number of transmissible data (read, write per function module): 15 (integer)

Max. 16 function modules can be connected physically to a bus coupler. If energized by power supply modules, 62 function modules per bus coupler are addressable.

Definitions:

Input data: read data seen from the bus master Output data: write data seen from the bus master.

6.3.1 **Process data module "without data"**

The entry of process data module "module without data" is used, unless cyclical data should be transmitted during process data exchange, although a function module is defined. Parameter setting for this entry is also necessary (s. below).

6.3.2 Process data modules in integer format

The number of data transmitted on the PROFIBUS is determined by means of the process data modules. The data content is determined in the function module engineering.

For the integer / FixPoint format, the following modules are available:

IO type	Words	Variable	Format	Module ID	Data per module
1	1	IN1	FixP	50hex / 80dec	1 input
1	2	IN1 IN2	FixP	51hex / 81dec	2 inputs
1	4	IN1 IN4	FixP	53hex / 83dec	4 inputs
0	1	OUT1	FixP	60hex / 96dec	1 output
0	2	OUT1 OUT2	FixP	61hex / 97dec	2 outputs
0	4	OUT1 OUT4	FixP	63hex / 99dec	4 outputs
I/0	1/1	IN1 / OUT1	FixP	70hex /112 dec	1 input / 1 output
I/0	2/2	IN1IN2 / OUT1OUT2	FixP	71hex / 113dec	2 inputs / 2 outputs
I/0	3/3	IN1IN3 / OUT1OUT3	FixP	72hex / 114dec	3 inputs / 3 outputs
I/0	6/6	IN1IN6 / OUT1OUT6	FixP	75hex /117dec	6 inputs / 6 outputs
I/0	9/9	IN1IN9 / OUT1OUT9	FixP	78hex / 120dec	9 inputs / 9 outputs
I/0	12/12	IN1IN12 / OUT1OUT12	FixP	7Bhex / 123dec	12 inputs / 12 outputs
I/0	15/15	IN1IN15 / OUT1OUT15	FixP	7Ehex / 126dec	15 inputs / 15 outputs

6.3.3 **Process data modules in floating point format**

The number of data transmitted on the PROFIBUS is determined by means of the process data modules. The data content is determined in the function module engineering.

Words	Variable	Format	Module ID	Data per module
2	IN1	Float	D1hex / 209dec	1 input
4	IN1 IN2	Float	D3hex / 211dec	2 inputs
8	IN1 IN4	Float	D7hex / 215dec	4 inputs
2	OUT1	Float	E1hex / 225dec	1 output
4	OUT1 OUT2	Float	E3hex / 227dec	2 outputs
8	OUT1 OUT4	Float	E7hex / 231dec	4 outputs
2/2	IN1 / OUT1	Float	F1hex / 241dec	1 input / 1 output
6/6	IN1IN3 / OUT1OUT3	Float	F5hex / 244dec	3 inputs / 3 outputs
12/12	IN1IN6 / OUT1OUT6	Float	FBhex / 251dec	6 inputs / 6 outputs
16/16	IN1IN8 / OUT1OUT8	Float	FFhex / 255dec	8 inputs / 8 outputs
	Words 2 4 8 2 2 4 8 2/2 6/6 12/12 16/16	Words Variable 2 IN1 4 IN1 IN2 8 IN1 IN4 2 OUT1 4 OUT1 OUT2 8 OUT1 OUT4 2/2 IN1 / OUT1 6/6 IN1IN3 / OUT1OUT3 12/12 IN1IN6 / OUT1OUT6 16/16 IN1IN8 / OUT1OUT8	Words Variable Format 2 IN1 Float 4 IN1 IN2 Float 8 IN1 IN4 Float 2 OUT1 Float 4 OUT1 OUT2 Float 8 OUT1 OUT2 Float 8 OUT1 OUT4 Float 2/2 IN1 / OUT1 Float 6/6 IN1IN3 / OUT1OUT3 Float 12/12 IN1IN6 / OUT1OUT6 Float 16/16 IN1IN8 / OUT1OUT8 Float	Words Variable Format Module ID 2 IN1 Float D1hex / 209dec 4 IN1IN2 Float D3hex / 211dec 8 IN1IN4 Float D7hex / 215dec 2 OUT1 Float D7hex / 215dec 2 OUT1 Float E1hex / 225dec 4 OUT1OUT2 Float E3hex / 227dec 8 OUT1OUT4 Float E7hex / 231dec 2/2 IN1 / OUT1 Float F1hex / 241dec 6/6 IN1IN3 / OUT1OUT3 Float F5hex / 244dec 12/12 IN1IN6 / OUT1OUT6 Float FBhex / 251dec 16/16 IN1IN8 / OUT1OUT8 Float FFhex / 255dec

For floating point format, the following modules are available:

Please, note that these data have to be transmitted always as consistent data !

6.3.4 Example: specification of the number of process data

A *rail line* system comprises three function modules, each of which includes a different number of values to be transmitted:

- Module 1: an integer value (the first value is transmitted).
- Module 2: read an integer value, write an integer value (with each operation, the first value is transmitted).
- Module 3: read three float values, write three float values (with each operation, the first three values are transmitted).

Fig. 14: Selecting the number of values- on S7example

The order of selected process data modules determines the function module assignment. Process data module 1 defines the number of data of the function module with address 1, process data module 2 determines the number of data for the function module with address 2, etc.

7

User parameter setting

Parameter setting for DPV0 master

After selection of the process data modules, the bus coupler and function module **PROFIBUS** user parameters must be adjusted.

In addition to the standard parameter data, the bus coupler has also user-specific parameter data which must be set via the bus configuration tool of the relevant bus master.

Distinction of the settings which are valid for the overall *rail line* system and settings for each function module is required.

7.1.1 System-wide parameter setting

The system-wide user parameter setting is valid for the function modules of a bus node. The significations of adjustable user parameter data (4th byte) are given in the following tables. These settings are not stored in the device, i.e. the default settings are activated after switch-on.

	Bit	Descr.	Signification	
13rd byte			Reserved for DPV1.	
	Bit	Descr.	Signification Default	
4th byte 0 1		Motorola / Intel format	Format for floating point values and integer values: Motorola (IEEE 754) / Intel (0 /1) For connection also to non-compatible PLCs or PC cards. Example: The Motorola format of value 123.4 is: 42 F6 CC CD in Intel format, the value is CD CC F6 42	0 (Motorola)
	1	Diagnosis format (\rightarrow chapter 8.2 p.31)	Extended / standard diagnosis (0 / 1) Extended diagnosis: standard diagnosis plus device-specific diagnosis. Standard diagnosis: (6 bytes) without device-specific information.	0 (extended)
	2	Start up (presently not realized)	Data exchange start-up, if module configuration and inserted modules do not correspond Start: always start-up, data exchange with corresponding modules Don't start: no start-up with divergences	0 (start)
	37	reserved		0

7.1.2 Function module parameter setting

The user parameter setting comprises 3 bytes for each function module. It defines

- the corresponding instrument type and option for each function module and
- the behaviour in case of bus failure.

Device type and option must correspond with the actually inserted function modules, otherwise, error signalling will occur and no process data can be exchanged.

When starting up the PROFIBUS, the user parameter data are received in the bus coupler and stored as defined configuration. Earlier configurations are overwritten.

Configurations are pre-defined by the bus master when starting up the bus and need not be specified via BlueControl $\ensuremath{\mathbb{B}}$.

The significations of user parameter data (byte 1 + 2) are given in the following tables:

	Descr.	Signification	Option version
1st2nd byte	Device-ID	"don't care"	Undefined module O
		UNIFLEX CI 45 "Cl45-1x3-200x0-xxx Std" "Cl45-1x3-210x0-xxx Std+opt1" "Cl45-1x3-220x0-xxx Std+opt2" "Cl45-1x5-200x0-xxx 2rel" "Cl45-1x5-210x0-xxx 2rel+opt1" "Cl45-1x5-220x0-xxx 2rel+opt2"	1 relay 1 relay, option 1 1 relay, option 2 2 relays 2 relays, option 1 2 relays, option 2
		KS 45 "KS45-1x1-200x0-xxx Std, di_ct" "KS45-1x1-210x0-xxx Std, di_op" "KS45-1x1-220x0-xxx 2Al, di_ct" "KS45-1x1-230x0-xxx 2Al, di_op" "KS45-1x3-200x0-xxx Std+A0, di_ct" "KS45-1x3-210x0-xxx Std+A0, di_op" "KS45-1x3-220x0-xxx 2Al+A0, di_ct" "KS45-1x3-230x0-xxx 2Al+A0, di_op" "KS45-1x5-200x0-xxx 2D0+rel, di_ct" "KS45-1x5-210x0-xxx 2D0+rel, di_op"	2 relays, contact input 2 relays, opto-coupler input 2 relays, 2 universal inputs, contact input 2 relays, 2 universal inputs, opto-coupler input 2 relays, analog output, contact input 2 relays, analog output, opto-coupler output 2 relays, 2 universal inputs, analog output, contact input 2 relays, 2 universal inputs, analog output, opto-coupler input 2 opto-coupler outputs, 1 relay, 1 HC contact input 2 opto-coupler outputs, 1 relay, 1 HC opto-coupler input
		TB 45 "TB45-1x1-200x0-xxx Std, di_ct" "TB45-1x1-210x0-xxx Std, di_op" "TB45-1x1-220x0-xxx opt1, di_ct" "TB45-1x1-230x0-xxx opt1, di_op" "TB45-1x3-200x0-xxx AO, di_ct" "TB45-1x3-210x0-xxx AO, di_op" "TB45-1x3-220x0-xxx AO+opt1,di_ct" "TB45-1x3-230x0-xxx AO+opt1,di_op"	2 relays, contact input 2 relays, optocoupler input 2 relays, 2 universal inputs, contact input 2 relays, 2 universal inputs, opto-coupler input 2 relays, analog output, contact input 2 relays, analog output, opto-coupler output 2 relays, 2 universal inputs, analog output, contact input 2 relays, 2 universal inputs, analog output, opto- coupler input

User parameter setting

	Descr.	Signification		Default
3rd byte	Fail-safe	Module behavi	our with bus errors; application dependent on system concept.	0 (last value)
		last value (0):	hold existing values	0
		zero (1):	set values to O	
		fault value (2):	presently no function, behaviour as zero	

* Notes:

• Entry "don't care" can be used, unless the exact instrument description is known.

Caution: In the event of replacement, any other modules can be inserted.

2 For definitions, see chapter 7.1.3.

'arameters	Value
Cal Station parameters	
–≝ DP Interrupt Mode	DPV0
⊨ 🔄 DPV1 interrupts	
– Status interrupt (OB55)	
–≝ Vendor-specific interrupt (0B57)	
–🗐 Diagnostic interrupt (OB82)	
└── Hardware interrupt (OB40 to 47)	
🛱 🦳 General DP parameters	
– 🗐 Fail-safe	
LE Startup when expected/actual config. differ	
🔁 🔄 Device-specific parameters	
—≣ Motorola/Intel format	IEEE(Motorola)
— 🗐 Diagnosis format	extended
LE Start-up	Start
E - E Hex parameter assignment	
— I DPV1_Status (0 to 2)	C4,00,00
∟ User_Prm_Data (3)	00

Fig. 15: User parameter setting for Buscoupler - Example S7

7.1.3 Fail-safe

The fail-safe user parameter setting determines the device behaviour in case of bus failure or master 'bus stop' . In case of bus failure, the device operates according the following rules:

Fail-safe setting	Reaction in case of bus failure or master stop
last value (default)	continue with the values sent last
	forced analog inputs are set to FAIL
zero	forced analog inputs are set to FAIL
	forced digital inputs are set to zero
	forced outputs are set to zero
	remaining transmitted values remain unchanged
last value	presently no function (behaviour as zero)

(a) Fail-safe condition is detected also when a faulty PROFIBUS configuration telegram or a faulty user parameter byte no. 4 was sent.

7.1.4 Example: module selection

The configuration for the bus coupler is determined via the user parameter setting .

Example:

- CI 45, 24V (only these are permissible with system interface), 1 universal input, 1 analog output and 2 relays Order no. CI45-115-2000-000
 - Fig. 16: Selecting the modules

arameters	
Device-specific parameters Device-ID Ei Failsafe Hex parameter assignment User_Prm_Data (0 to 2)	CI45-1x5-210x0-xxx 2rel+opt1 CI45-1x5-210x0-xxx 2rel+opt1 CI45-1x5-20x0-xxx 2rel+opt2 K5455-1x1-200x0-xxx 5td, di_ct
	KS45-1x1-220x0-xxx 2Aj, di_ct KS45-1x1-230x0-xxx 2Aj, di_op KS45-1x3-200x0-xxx Std+A0 <i>j</i> , di_ct ▼

The defined configuration of the function modules comprises the device type and the relevant version and options. It comprises also the allocated position / address.

Any configuration pre-defined via BlueControl® is overwritten when starting up the PROFIBUS.

7.2 Parameter setting for DPV1 master

In addition to the device-specific DPV0 parameter setting, further settings for DPV1 functions are possible. These settings are made also via the relevant bus master bus configuration tool. With RL DP, the following functions can be selected and enabled:

Operating mode according to DPV0 or DPV1

The user parameter setting is valid throughout the device. The following tables explain the significations of DPV1-specific settings (byte 1 to 3). The device-specific parameters (byte 4) are described in chapter 7.1, p.25. These settings are not stored in the device, i.e. the default settings are activated after switch-on.

DPV1 status 1

	Bit	Descr.	Signification	Default
1st byte	01	reserved		
	2	WD_Base_1ms	Device supports watchdog time base 1ms	1 (fixed)
	35	reserved		
	6	fail-safe	Device supports fail safe mode. In clear mode, the device accepts data telegrams without data.	1 (fixed)
	7	DPV1 enable	The class 1 master determines if the device should work in DPV0 or DPV1 mode. RL DP supports the two versions.	determ. by master

DPV1 status 2

	Bit	Descr.	Description	Default
2nd byte	0	Check_Cfg_Mode	RL DP checks configuration data as defined inIEC 61158	0
	1	reserved		
	2	Enable_Update_Alarm	Not supported	0
3 Enable_Status_Alarm Not supported		Not supported	0	
	4 Enable_Manufacture_Spe Not supported		Not supported	0
cific_Alarm 5 Enable_Diagnostic_Alarm Not supported				
		Not supported	0	
	6	Enable_Process_Alarm	Not supported	0
	7	Enable_Pull_Plug_Alarm	Not supported	0

DPV1 status 3

	Bit	Descr.	Signification	Default
3rd byte	02	Alarm_Mode	Not supported	0
	37	reserved		

8 PROFIBUS DP diagnosis information

PROFIBUS DP offers a convenient and complex possibility to process diagnosis messages due to error conditions. The RL DP diagnosis information comprises standard diagnosis information (6 bytes) and additional device-specific diagnosis information. The latter can be switched off via the user parameters.

8.1 Standard diagnosis message

A standard diagnosis message comprises 6 bytes.

	Bit	Descr.	Signification
1st byte	0	Diag.station	Does not exist (sets master)
	1	Diag.station_not_ready	Slave is not ready for data exchange
	2	Diag.cfg_Fault	Configuration data do not correspond
	3	Diag.ext_diag	Slave has external diagnosis data
			(Only used with diagnosis setting "extended")
	4 Diag.not_supported Requested function is not supported in slave		Requested function is not supported in slave
	5 Diag.invalid_slave_response Fixes slave to 0		Fixes slave to 0
	6	Diag.prm_fault	Faulty parameter setting (ident number etc.)
	7	Diag.master_lock (sets Master)	Slave is programmed by other master

Standard diagnosis

	Bit	Descr.	Signification
2nd byte	0	Diag.Prm_req	Slave parameters must be set again
			The application has detected a condition which requires restart with a
			corresponding new parameter setting and configuration. In response to
			this diagnosis, the master realizesa start-up with predetermined
		D	parameter setting and configuration.
	1	Diag.Stat_diag	Static diagnosis (byte diagnosis bits)
			Due to the status in the application, the slave cannot make valid data
			available. As a consequence, the master requests only diagnosis
			Information, until the slave resets this bit. However, the PRUFIBUS DP
			status is data exchange, i.e. data exchange can be continued
	2	Fixed to 1	
	3	Diag.WD on	Response monitoring active
	4	Diag.freeze mode	Freeze command received
	5	Sync Mode	Sync command received
	6	reserved	
	7	Diag.deactivated	(Set by the master)
	Bit	Descr.	Signification
3rd byte	06	reserved	
	7	Diag.ext_overflow	This bit is set by the slave, when the number of diagnosis data exceeds
			the capacity of the available diagnosis data memory area.
	Bit	Descr.	Signification
4th byte	07	Diag.master_add	Master address after parameter setting (0xFF without parameter
			(setting)
	Bit	Descr.	Signification
5th byte	07		ldent number (high byte); 0x09
	Bit	Descr.	Signification
6th byte	07		Ident number (Iow byte); 0xAC

8.2 Device-specific diagnosis

The following device-specific diagnosis (during DPV1 mode: status messages) can be switched off via user parameter setting (→section 7 p.25). This permits switching over to the standard iagnosis, e.g. for earlier DP masters which do not support all the functions, or when displayed diagnosis information is not of interest. Structure from byte 7:

- Length information (1 byte)
- Bus coupler: software version (1 byte)
- Bus coupler: reserve (2 bytes)
- Per function module: alarm and status information (7 bits) / (max. 55 bytes)

Device-spec. diagnosis

	Bit	Descr.	Signification
7th byte	05	Header byte	Length in bytes incl. header byte'
	6, 7		Always '0' '0'
	Bit	Descr.	Signification
8th byte	07	Software version	Bus coupler software version, e.g. V1.2 = 0Chex
	Bit	Descr.	Signification
9th byte	07	Reserve	Bus coupler: reserve
	Bit	Descr.	Signification
10th byte	07	Reserve	Bus coupler reserve
	Bit	Descr.	Signification
11th byte	0	Module 1 - alarm type 1	Bit 0: alarm type 1 (e.g. sensor break, short circuit)
	1	Module 1 - alarm type 2	Bit 1: alarm type 2 (e.g. stored alarm, heating current alarm)
	2	Module 1 - status type 1	Bit 2: status type 1 - device error or information (E.1 E.4, Inf.1, Inf.2)
	3	Module 1 -	Bit 3: transmitted values out of defined limits (e.g. setpoint
		wrong output value	out of setpoint range)
	4	Module 1 -	Bit 4: communication error (e.g. communication with module
		communication error	failed, device missing)
	5	Module 1 -	Bit 5: Defined configuration unequal to actual configuration
		device configuration	
	0	mismatch	
	6	Module 1 - reserved	
	/	Module 2 - alarm type 1	Bit U: alarm type 1 (e.g. sensor break, short circuit)
	Bit	Descr.	Signification
12th byte	0	Module 2 - alarm type 2	Bit 1: alarm type 2 (e.g. stored alarm, heating current alarm)
	1	Module 2 - status type 1	Bit 2: status type 1 - device error or information (E.1 E.4, Inf.1. Inf.2)
	2	Module 2 -	Bit 3: transmitted values out of defined limits (e.g. setpoint
		wrong output value	out of setpoint range)
	3	Module 2 -	Bit 4: communication error (e.g. communication with module
		communication error	failed, device missing)
	4	Module 2 -	Bit 5: defined configuration unequal to actual configuration
		device configuration	
		mismatch	
	5	Module 2 - reserved	
	6	Module 3 - alarm type 1	
· · · · · · · · · · · · · · · · · · ·	7	Module 3 - alarm type 2	

 (\mathbf{i})

...

Please, note that the diagnosis values are not displayed correctly by earlier Simatic® S7 masters.

9 Engineering via PROFIBUS

The field bus coupler can be used to download a complete engineering from BlueControl[®], or to read it from the field bus coupler into the PC. This feature permits construction of central engineering stations without passing the data e.g. through a PLC. RL DP supports up to two acyclical connections to class 2 masters and one connection to the class 1 master.

To set up an acyclical connection process as described below:

- Determine the target rotation time
- Set up BlueControl® transmission.

9.1 BlueControl[®] via PROFIBUS-DPV1

Data transmission between BlueControl[®] and the field bus coupler is easy using the DPV1 functions. Both a complete engineering and operating functions as well as trend recording can be transmitted or realized.

- Engineering tool BlueControl[®] from version 1.5 supports PROFIBUS PC cards make Hilscher, e.g. CIF50-PB, CIF60-PB, firmware version \geq 1.0.71.
- () Engineering tool BlueControl® from version 2.4 supports additionally PROFIBUS PC cards make Siemens, e.g. CP5613.

How to make the settings required at the engineering tool and for the PROFIBUS card is explained below at the example of a PC card maker Hilscher.

9.1.1 **CIF** card settings

Case 1:

The instrument is not integrated into a PROFIBUS network.

The CIF card must be initialized with master address and Baudrate (see Fig 17 as an example).

Case 2:

The instrument is integrated into a network with other DP masters, e.g. S7.

A free master address must be allocated to the CIF card. Adjust the Baudrate already used at the master.

The target rotation time must be matched and adjusted on all masters connected on the PROFIBUS (see below).

Only the CIF card needs to be defined as C2 master (no device required as slave).

Fig. 17: C2 - Configuration of the master

Case 3:

The device is integrated into an engineering with the selected CIF card as a slave.

Access to the device is as a C1 communication. For description, see chapter 10.2, p.38.

Subsequently, the bus coupler must be connected with the CIF card.

9.1.2 BlueControl[®] settings

- Choose field "PC connection" to select the communication channel to BlueControl® with PROFIBUS 1 to 4 (max. 4 PROFIBUS cards can be fitted in the PC.)
- Specify the address (PROFIBUS address) to define • the device to be selected.

(1) For transmission from BlueControl, we recommend the following settings when using make Hilscher interface cards:

Device: set "Motorola = 0" as user parameter Motorola/Intel format. DP master: set "low/high byte" as memory format Byte"

[-2]

Unless communication with the Hilscher interface card can be built up, the causes can be e.g.:

- The device contains an earlier software version (• error message -7)
- The device is defined as a DPVO slave and access to the device by the engineering tool is via a class 1 master (error message 1132).
- The max. channel data length in the device DPV1 • settings is too low (error message 1132). The device is designed for 240 bytes.
- There is no communication to the device (error message 1129).
- The target rotation time is too small by design (error message 1129). •

Warning

Only one engineering tool per device at a time may be in data exchange.

Fig. 18: Selecting the communication channel

A faulty target rotation time can lead to communication trouble.

The DPV1 transfer times are dependent on Baudrate, total number of transmitted data and length of transferred data in the addressed instrument. Example: typical values for transmission of an instrument engineering are within 15 sec. and 3 min.

Further information on the acyclical data transmission is given in interface description "SB PROFIBUS-DP rail line parameter data" (9499-040-78118).

10 Quick entry

Example: SIMATIC[®] S7

The examples in this chapter show how to build up a DPV0 communication with a *rail line* PROFIBUS system and a SIMATIC S7 easily.

Test environment

10.1

For the test set-up, the following components are required:

- Programming unit or PC with PC adaptor
- Programming tool STEP[®]7 \geq V5.0
- Automation unit
 - e.g. CPU S7 315-2 DP, recent version

Components

- e.g. RL DP, (e.g. order number. RL40-112-00000-000)
- one or several devices from the *rail line* series
 - - e.g. universal controller KS 45 (e.g. order no. KS45-113-20000-000)
 - - e.g. transmitter UNIFLEX CI 45 (e.g. order no. CI45-113-20000-000)
 - - e.g. temperature limiter TB 45 (e.g. order no. TB-113-20000-000)
- Cable
 - PROFIBUS cable automation unit \leftrightarrow RL DP with PROFIBUS connectors and integrated terminating resistors programming unit \leftrightarrow automation unit

Example of a test environment:

Task

- Connection of an RL DP with address 5 to a CPU CPU315-2 DP via PROFIBUS-DP
- Process value display of the connected function modules
- The process values should be transmitted as integer value (1 value).

Before taking the test environment into operation, ensure the the automation unit does not contain a different user software ("initial delete")

Procedure;

Procedure

- Snap the bus connector onto the top-hat rail.
- Configure the RL DP bus coupler.
 - Set address 5 and snap the device onto the top-hat rail.
 - Connect the supply voltage.
- Configure the required function modules.
 - Click the device in position on the top-hat rail.
 - Address the modules (starting from #1, via front-panel key or BlueControl®).
 - Load the engineering into thedevice.
 - Select "Bus data (read)" as process value in Signals\Device\C.Inp via BlueControl® in parameter setting mode.
- Make the connections (PROFIBUS)
 - Activate the bus terminating resistors.
- PROFIBUS network configuration

- Define device in Step®7 - HW - Config

Fig. 21: Step7: Selecting the modules

- User parameter setting •
 - Realize system-wide parameter setting.

arameters	Value
🔁 Station parameters	
DP Interrupt Mode	DPV0
DPV1 interrupts	
—≣ Status interrupt (OB55)	
 Image: Vendor-specific interrupt (0B57) 	
 	
⊢≣ Hardware interrupt (UB40 to 47)	
E-G General DP parameters	
- El Fail-sate	
L≡ Startup when expected/actual config. differ	
Device-specific parameters	
- El Motorola/Intel rormat	IEEE(Motorola)
- E Diagnosis rormat	Chart
	Start
DP/d. Status (0 to 2)	C4 00 00
En Lleer Pre Data (2)	00
Le User_Fim_Data (5)	00

Fig. 19: User parameter setting for Buscoupler - Example S7

- Set the function module parameters.
 - Fig. 20: Selecting function modules

Otom paulineters □ Perioseific parameters □ Device pecific parameters □ C4451455210x0 xxx 2tel+opt1 □ Hex parameter assignment □ C45145220x0 xxx 2tel+opt1 □ User_Prm_Data (0 to 2) K5457141210x0 xxx 2tel+opt1 K545714220x0 xxx 2tel+opt1 □ K54571x3200x0 xxx 5td +AD, di_ct □	arameters A Station parameters	Value
→ ■ DeviceID C1451:552100.5%x2e4-opt1 → ■ Falae C1451:552100.5%x2e4-opt1 → ■ Falae C1451:552200.5%x2e4-opt2 → ■ Hex parameter assignment C451:552200.5%x2e4-opt2 → ■ User_Pm_Data (0 to 2) K5457:1412100.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1 K5457:1412200.5%x551:d1.c1	Device-specific parameters	
Lim Patiade CI451:65:210x0-xxx: 22el-dpn1 Hex parameter assignment CI451:165:220x0-xxx: 22el-dpn1 Lim User_Prm_Data (0 to 2) K5455:14:2010x0-xxx: 22el-dpn2 K5455:14:2010x0-xxx: 22el-dpn2 K5455:14:2010x0-xxx: 22el-dpn2 K5455:14:2200x0-xxx: 22el-dpn2 K5455:14:2200x0-xxx: 22el-dpn2 K5455:14:3200x0-xxx: 51d-400, di_ct K5455:14:3200x0-xxx: 51d-400, di_ct	- Device-ID	CI45-1x5-210x0-xxx 2rel+opt1
Hex parameter assignment Li≣ User_Pim_Data (0 to 2) K345-1x1-210x0xxxx Std, di op K345-1x1-220x0xxxx Std, di op K345-1x1-220x0xxxx Std, di op K345-1x1-220x0xxxx Std+AD, di op K345-1x1-220x0xxxx Std+AD, di op	L B Failsafe	CI45-1x5-210x0-xxx 2rel+opt1
C <u>B</u> User_rm_D445 (tri 62) K545 14 2106/tws Std. 4, op K545 14 2200/tws 24, d, ct K545 14 2300/tws 24, d, ct K545 14 2300/tws Std+A0, d_ ct ▼	Hex parameter assignment	KS45.1v1.200v0.www.Std.di.et
KS45-1x1-220x0/xxx2A), di_ct KS45-1x1-220x0/xxx2A(di.op KS45-1x3-200x0/xxxStd+AD, di_ct ⊻	LE User_Prm_Data (U to 2)	KS45-1x1-210x0-xxx Std, di_op
KS45-1x1-23bbt/wwx Std+AD, di_op KS45-1x3-200bd/wwx Std+AD, di_ot		KS45-1x1-220x0-xxx 2AI, di_ct
(K342) K32000788 310740, 0 0		KS45-1x1-230x0-xxx 2AL di_op
		K343-1x3-200x0-xxx Stu+A0, u_ct

- Transmit the hardware configuration to the DP master.Switch the automation unit to Run.

• Set up a variable table in monitor mode and display the measured values.

Fig. 22: Displayed in the monitor

	総Monitoring and Modifying Variables - [@VAT_1 RL-Test\SIMATIC 300(1)\CPU 315-2 🔲 🗙 📸 Table Edit Insert PLC Variable View Options Window Help								
4									
Π	1	Add	lress	Display format	Status value	Modify value			
1		PEW	256	DEC	406				
2		PEW	258	DEC	343				
3		PEW	260	DEC	2515				
4									
Г									
I									
RL-	Tes	t\SIMA	TIC 300	(1)\\57-Programm(2)			11.		

10.2	Example: make Hilscher interface card
10.2.1	Versions for DPV0
	The examples in this chapter show how to build up a DPV0 communication with a <i>rail line</i> PROFIBUS system and a make Hilscher interface card easily.
Test enviror	nment
	For the test set-up, the following components are required:
	PC / notebook
	Sylon® system configurator
	 a CIF® Interface card e.g. CIF50-PB, CIF60-PB
Components	S
	• e.g. RL DP, (e.g. order no. RL40-112-00000-000)
	 one or several devices of the <i>rail line</i> series
	 – e.g. universal controller KS 45 (e.g. order no. KS45-113-20000-000)
	 – e.g. transmitter UNIFLEX UI 45 (e.g. order no. UI45-113-20000-000) – e.g. tomporature limiter TB 45 (e.g. order no. TB-113-20000-000)
	- PROFIBUS cable between automation unit \leftrightarrow BL DP with PROFIBUS connectors and integrated terminating
	resistors programming unit \leftrightarrow automation unit
ask	Test environment example:
luon	 An RL DP with address 5 should be connected to a CIF60-PB via PROFIBUS-DP.
	The process values of the connected function modules should be displayed.
	 The process values should be transmitted as integer value (1 value).
ĺ	Before taking the test environment into operation, ensure that the automation unit does not contain a different user software. Abschnitt muss weg
Procedure:	
	Snap the bus connector onto the top-hat rail.
	Configure the RL DP bus coupler.
	 Set address 5 and snap it onto the top-hat rail.
	 Connect the supply voltage.
	Configure the required function modules
	 Click the devices in position on the top-hat rail Address the module deterting from #1 via front penal keys or Plus Control (9)
	 Address the modules(starting norm #1, via none-parent keys of bidecontrol®) Select "Bus data (read)" as process value in Signals/Device/C Inp via BlueControl® in parameter setting
	mode.
	 Load the engineering into the device.
Procedure	
	Make the connection (PROFIBUS)
	 Activate the bus terminating resistors.
	YKUFIBUS network configuration
	 It necessary adapt addresses and bus master nardware configuration and transmit them to the DP master (menu Online\Download).

- Start the communication.

Procedure and typical settings for this example are shown in the following figures:

• Network structure

Fig. 23: Example network structure for SyCon

File Edit View Insert Online Settings	Tools Window Help	
💑 🖦 🔏 PDD		
CONTRACT OF CONTRACT.	Master0	
S	Master0 Station address	2
	Master0 Station address FMS/DP Master	2 CIF60-PB
	Master0 Station address FMS/DP Master Slave5	2 CIF60-PB
	Master0 Station address FMS/DP Master Slave5 Station address	2 CIF60-PB

• Selection of process data modules

Fig. 24: Selection of process data modules

Ge	neral-							-		г	
De	vice	RL D	P rail line			Stati	on addr	ress 1			<u>0</u> K
De	scriptio	on Slav	e5								Cancel
ব ব	Activa Enabl	ate device ir le watchdo <u>c</u>	n actual conf control	iguration	GSD f	ile P	'MA_09	3A.GSD		Ī	Parameter Data
Max. Max. Max. Max.	length length length numbe	of in-/outpu of input dat of output d er of module	ut data 4 :a 2 ata 2 s	88 Byte 44 Byte 44 Byte 65	Lengtł Lengtł Lengtł Numb	n of in-/out n of input o n of output er of modu	put dat lata data les	a 31 20 11 5	Byte Byte Byte	Assign Station	DPV1 Settings hed master h address 2
Mod	ule			Inputs	Outputs	In/Out	Iden	tifier	-	2/0	IFEN.PR
A. 1	: Cer	neral-Par	ameter			4 Word	0xF3	0		1270	
A. 2	: Dat	a module	2		1 Byte		0x20			Achus	al al ave
A. 3	: Sta	atus modu	ale	8 Byte			0x17			Station	n address 1
Mod	ule t	vithout d	lata				0x00			Slave	5
Ana	log]	[n - 1 w	ord IN	l Word			0x50			170	L DD seilline
Ana	log 1	In - 2 w	ord IN	2 Word			0x51	10	-	Live	
Slo	tIdx	Module	Symbol	Type	I Addr.	I Len.	Type	0 Addr.	0 Lei	a. 🔺	Append Module
0	1	A.1:	Modulel	IW	0	4	QW	0	4		
1	1	A.2:	Module2				QB	8	1		<u>R</u> emove Module
2	1	A.3:	Module3	IB	8	8					Insert Module
з	1	Analog	Module4	IW	0	2					Tuser Module
4	1	Analog	Module5				QW	0	1		Predefined Modules
-		-	-								Symbolic Names

• System-wide DPV0 user parameter setting

Fig. 25: DPVO user parameter setting

vice	RL DP rail line	Station address	1	OK
scriptio	n Slave5			Cancel
Param	eter Data			x
Descr	iption Common Parameter Data			ОК
Byte	Description	Value		Cancel
3	Motorola/Intel format	IEEE(Motorola)		
3	Diagnosis format	extended		
3	Start-up	Start		Parameter Data
-	Diago	ric format	VI	
-	Diagino	sis turmat		Common
-	exter	ded	ок	Module
-	stand	ard —		
			Cancel	
			F]
1	Analog Module3 1		F	luces bio shile
				msen Module
				Predefined Modules

• Function module parameter setting

evice RL DP rail lin	e	Station ad	dress 1		ОК
escription Slave5					Cancel
Parameter Data	e v.				2
Description Index Pa	arameter Data				ок
Byte Description		Value		•	Cancel
0 Device-ID		dont care			Cantoli
2 Failsafe		last value			
Device-ID		×		P	arameter Data
dont care	Ch-l	ок 📔			Common
CI45-1x3-200x0-	exx Std+ont1	Connect			Madula
CI45-1x3-220x0-	xxx Std+opt2			_ _	Module
CI45-1x5-200x0-	xxx 2rel	-		_	
CI45-1x5-210x0-	xxx ∠rei+opt1 xxx 2rel+opt2	-		-	
KS45-1x1-200x0	-xxx Std, di_ct	-		-	
KS45-1x1-210x0	-xxx Std, di_op	4			
TK545-1x1-220x0	-xxx ZAL dict	-		-	
1 Analog Modu	1e3 10 6	1			
					nsert Module

Fig. 26: Parameter setting function modules

• Master settings

Fig. 27: Master settings SyCon

📅 SyCon - [RL-DP.pb]	
🙀 File Edit View Insert Online Settings Tools \	Mindow Help
💑 🛋 🔏 PDD	
	Master0
	Station address
	FMS/DPMaster CIF60-PB
	Slave1
	Station address 1
	DF Slave RL DF Tall life
	Bus Parameter
	ОК
	Baud rate 1500 kBits/s Cancel
	Optimize Standard Edit

- For consistent data transmission, "buffered" transmission procedure must be selected. The memory format must be set to "Little Endian" (Motorola).
 - Data can be displayed in the network view.

Fig. 28: Network view

File Network View] File View Online Settings Window Help File Netw Online Settings Window Help							
Logical Network View				Tag List			
E-1 rl-dp_pb	Tag Name	Туре	Off	Processing	Value	Description	L
E ■ 164er0 E Q Diagnostics E Module1 - 10 Module1 - 10 Module1 - 10 Module3 - 10 Unconnected	I Input	16-bit unsigned integer (w	0	direct Read Only	Bad	Timeout during DevExchangeIOErr	

10.2.2 Versions for DPV1

RL DP can be defined as DPV1 slave. Possible settings are given on the following picture.

Fig. 29: DPV1 - parameter settings

Cyclic connection	Auto Clear		<u> </u>
No Abort if slave not responding	Process the Autoclear full	unction	<u>C</u> ancel
C Abort if slave is not responding	C Ignore the Autoclear fun	iction	
- Fail Safe Support	1		
O Data is sent in CLEAR mode			
No Data is sent in CLEAR mode			
DPV1 activated			OPC Symbols
aximum Channel Data Length 244	Maximum Alarm PDU Length	59	
aximum Channel Data Length 244	Maximum Alarm PDU Length	59	
aximum Channel Data Length 244	Maximum Alarm PDU Length Maximum active Alarms	59 32 Alarms in total	
aximum Channel Data Length 244 iagnostic Update Delay Slave Functions State Service Access Deliat	Maximum Alarm PDU Length Maximum active Alarms	59 32 Alarms in total	
aximum Channel Data Length 244 iagnostic Update Delay 0 Slave Functions Extra Alarm Service Access Point Constant Alarm Service Access Point	Maximum Alarm PDU Length Maximum active Alarms Configuration Data com	59 32 Alarms in total vention	
aximum Channel Data Length 244 iagnostic Update Delay 0 Slave Functions Extra Alarm Service Access Point • Master Alarmacknowledge SAP51 • Master Alarmacknowledge SAP51	Maximum Alarm PDU Length Maximum active Alarms Configuration Data com Configuration Data con	59 32 Alarms in total vention of EN 50170	
aximum Channel Data Length 244 iagnostic Update Delay 0 Slave Functions Extra Alarm Service Access Point © Master Alarmacknowledge SAP50 Master Alarmacknowledge SAP50	Maximum Alarm PDU Length Maximum active Alarms Configuration Data com Configuration Data c Configuration Data c	59 32 Alarms in total vention of EN 50170 of DPV1	
aximum Channel Data Length 244 iagnostic Update Delay 0 Slave Functions Extra Alarm Service Access Point C Master Alarmacknowledge SAP51 C Master Alarmacknowledge SAP50 Enabled Alarms	Maximum Alarm PDU Length Maximum active Alarms Configuration Data com Configuration Data c Configuration Data c	59 32 Alarms in total vention of EN 50170 of DPV1	
aximum Channel Data Length 244 iagnostic Update Delay 0 Slave Functions Extra Alarm Service Access Point © Master Alarmacknowledge SAP51 © Master Alarmacknowledge SAP50 Enabled Alarms © Pull Plug Alarm	Maximum Alarm PDU Length Maximum active Alarms Configuration Data com Configuration Data co Configuration Data co Manufacturer Alarm	59 32 Alarms in total vention of EN 50170 of DPV1	
aximum Channel Data Length 244 iagnostic Update Delay 0 Slave Functions Extra Alarm Service Access Point Master Alarmacknowledge SAP51 Master Alarmacknowledge SAP50 Enabled Alarms Pull Plug Alarm V Process Alarm	Maximum Alarm PDU Length Maximum active Alarms Configuration Data com Configuration Data co Configuration Data co Manufacturer Alarm Status Alarm	59 32 Alarms in total vention of EN 50170 of DFV1	

11

Address areas and -formats

11.1 Area definitions

The address is coded in 2 bytes. The most significant 3 bits determine the data transmission format. The following formats are available for *rail line* devices:

- Integer
- Integer with 1 decimal
- (Float acc. to IEEE)

Address area hex	dez.	Data transfer format	Smallest transferable value	Largest transferable value	Resolution
0x0000 0x1FFF	0 8191	Integer without decimals	-30000	+32000	+/- 1
0x2000 0x3FFF	8192 16383	Integer with 1 decimal	-3000.0	+3200.0	+/- 0.1
0x4000 0x7FFF	1638432767	Float (IEEE format)	-1.0 E+037	+1.0 E+037	+/-1.4E-045

For integer numbers with and without decimals, the value range -30000 to +32000 is transmitted via the interface. Scaling with the factor 1 or 10 must be carried out by the transmitting device as well as by the receiving device.

11.2

Special values

The following special values are defined for transmission in the integer format:

- 31000Sensor fault This value is returned for data that do not represent a meaningful value due to a sensor fault.
 32000 Switch-off value
- S2000 Switch-on value
 The function is disabled.
 32500 Undefined value
- The device returns this value, if a datum is not defined within the requested range ("NOT DEFINED VALUE").
- 32768Corresponds to 0x8000 hex. The value to be transmitted lies outside the transferable integer value range.

The following special values are defined for transmission in the Float format:

• 1.5E37This datum is not defined. The device returns this value, if a datum is not defined within the requested range.

11.3 Composition of the address tables

In the address tables shown in Section 5, the addresses for every parameter of the corresponding data format are specified in decimal values.

The tables are structured as follows:

Name	R/W	Address	Integer	Real	Туре	Value/off	Description
		base	_				
		1dP					
– Name			scription of the	datum			
– r/w p		per	permitted type of access: R = read, W = write				
_ A	ddraee ii	ntagar Ada	Addross for integer values				

- Address integer
 Address for integer values
 Integer without designals
- base Integer without decimals
- 1 dP Integer with 1 decimal
- Real
 Floating point number / Float (IEEE format)
- Type internal data type
- Value/off permissible value range, switch-off value available
- Description Explanations

11.4 Internal data types

The following data types are assigned to data used in the device:

- Float
 Floating point number
 Value range: -1999 ... -0.001, 0, 0.001 ... 9999
- INT Positive whole integer number Value range: 0 ... 65535 Exception: Switch-off value '-32000'
- Text Text string consisting of n characters, currently defined n = 5 Permissible characters: 20H...7FH
- Long Positive whole Long number Value range: 0 ... 99999
- Enum
 Selection value

11.5 Annex of status / control information

The signification of selectable status and control information for the transmitted bus data (read / write) are explained in this chapter.

11.5.1 Transmitter UNIFLEX CI 45

Status words

Name	r/w	Туре	Value/off Description	
St.Di	r	Int		Status of digital inputs or of keys (in binary code).
			Bit 0: input di1, Bit 8: status of Enter key Bit 9: status of decrement key, Bit 10: status of increment key	
St.Ain	r	Int	0127	Analog input status in bit code (error, e.g. short circuit)
			Bit 0 break at input 1 Bit 1 wrong polarity at input 1 Bit 2 short circuit at input 1 Bit 3 not used Bit 4 break at input 2 Bit 5 wrong polarity at input 2 Bit 6 short circuit at input 2 Bit 7-15 not used	
St.Ala	r	Int		Alarm status: the status of individual alarms such as exceeded limit value in bitwise code
			Bit 0 pending/stored exceeded limit valu Bit 1 pending/stored exceeded limit valu Bit 2 pending/stored exceeded limit valu Bit 3-7 not used Bit 8 pending exceeded limit value 1 Bit 9 pending exceeded limit value 2 Bit 10 pending exceeded limit value 3 Bit 11-15 not used	ие 1 ие 2 ие 3
St.Do	r	Int	015	Digital output status
			Bit 0 digital output 1 Bit 1 digital output 2 Bit 2 digital output 3	
Fail	r	Enum	Enum_InpFail	Error at input, faulty or incorrectly connected sensor
			0 no error 1 sensor break 2 faulty input polarity 4 short circuit at input	

Control words

Name	r/w	Туре	Value/off	Description
F.Di	r/w	Int	01	Digital input forcing. Forcing means external control of a device input, the device stores the value on this input (defined for device inputs by the supervisory
			Bit 0 Forcing for digital	system, e.g. for function testing).
F.Do	r/w	Int	015	Digital output forcing. Forcing means external control of at least one output, the device does not influence this output (use of free device outputs by the supervisory system)
			Bit 0 digital output 1 f Bit 1 digital output 2 f Bit 2 digital output 3 f	orcing orcing orcing

11.5.2 Universal controller KS 45

Status words

Name	r/w	Туре	Value/off Description	
<u>St.Di</u>	r	Int	Bit 0: input di1 Bit 8: Enter key status Bit 9: Decrement key status Bit 10: Increment key status	Status of digital inputs or of keys (in binary code).
St.Ain	r	Int	0127	Status of analog inputs (error, e.g. short circuit in bit code)
			Bit 0 break at input 1 Bit 1 wrong polarity at input 1 Bit 2 short circuit at input 1 Bit 3 not used Bit 4 break at input 2 Bit 5 wrong polarity at input 2 Bit 6 short circuit at input 2 Bit 7-15 not used	

St.Ala		Int		Status of alarms: the status of individual alarms such as exceeded limit value and loop in bitwise code
			Bit 0pending or stored exceeded limit valueBit 1pending/stored exceeded limit value 2Bit 2pending/stored exceeded limit value 3Bit 3not usedBit 4pending/stored loop alarmBit 5pending/stored heating current alarmBit 6pending/stored SSR alarmBit 7not usedBit 8pending exceeded limit value 1Bit 9pending exceeded limit value 2Bit 10pending exceeded limit value 3Bit 11not usedBit 12pending loop alarmBit 13pending heating current alarmBit 14pending SSR alarmBit 15not used	1
St.Do	r	Int	015 D	igital output status
			Bit 0digital output 1Bit 1digital output 2Bit 2digital output 3	
Fail r	r	Enum	Enum_InpFail Ei	rror at input, faulty or incorrectly connected sensor
			 0 no error error 1 sensor break 2 faulty polarity at input 4 short circuit at input 	

Ada.St	Enum Enum_AdaStart	starting / stopping the adaptation After the start signal, the controller waits, until the process has reached the process at rest condition (PIR) and starts self-tuning. Self-tuning can be cancelled manually at any time.
		automatically .
	0 Stopping the adapta to control operation 1 Adaptation start is f	tion leads to cancelation of the adaptation, the controller changes with the parameter values valid before adaptation start. rom manual or from control operation.

St.Tune r	Int	065535	Self-tuning status information, e.g. the actual condition and any results, warnings and error messages
		Bit 0 Bit 1 Bit 2 Bit 3 - 7 Bit 8 - 11 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0	process at rest; 0 no; 1 yes controller self-tuning mode; 0 off; 1 on controller self-tuning result; 0 0K; 1 error not used result of heating attempt no message /attempt running successful successful successful with exceeded set-point hazard error: faulty output action error: no process reaction error: low return point error: exceeded limit limit value hazard error: output step change too small error: set-point reserve too small
		Bit 12 - 15	result of cooling attempt (as heating attempt)

St.Prog r	Int	0255	Th th	ne programmer status contains e.g. at which point of e program sequence the program is in bit code .
		Bit 0,1,2	segment type	
			0: rising,	
			1: falling	
			2: holding	
		Bit 3	program run	
		Bit 4	program end	
		Bit 5	program reset	
		Bit 6	program start flank missing]
		Bit 7	program BandHold + FailHo	old
		Bit 8	programmer active	

Control	word	ls		
Name	r/w	Туре	Value/off	Description
F.Di	r/w	Int	01 Bit 0 forcing for digital	Digital input forcing. Forcing means external control of a device input, the device stores the value on this input (defined for device inputs by supervisory system e.g. for function testing.) input 1
F.Do	r/w	Int	015	Forcing of digital outputs. Forcing means external control of at least one output, the device does not influence this output (use of free device outputs by supervisory system)
			Bit 0 digital output 1 Bit 1 digital output 2 Bit 2 digital output 3	forcing forcing forcing

rail line

11.5.3 Temperature limiter TB 45

Status	wor	ds		
Name	r/w	Туре	Value/off Description	
St.Di	r	Int		Status of digital inputs or of keys (in binary code).
			Bit 0: input di1 Bit 8: Enter key status Bit 9: Decrement key status Bit 10: Increment key status	
St.Ain	r	Int	0127	Status of analog inputs (error, e.g. short circuit) in bit code)
			Bit 0break at input 1Bit 1wrong polarity at input 1Bit 2short circuit at input 1Bit 3not usedBit 4break at input 2Bit 5wrong polarity at input 2Bit 6short circuit at input 2Bit 7-15not used	
St.Ala	r	Int		Status of alarms: the status of individual alarms such as exceeded limit value in bitwise code
			Bit 0 pending/stored exceeded limit value Bit 1 pending/stored exceeded limit value Bit 2 pending/stored limit value 3 Bit 3-7 not used Bit 8 pending exceeded limit value 1 Bit 9 pending exceeded limit value 2 Bit 10 pending exceeded limit value 3 Bit 11-15 not used	2
St.Do	r	Int	015	digital output status
			Bit 0 digital output 1 Bit 1 digital output 2 Bit 2 digital output 3	
Fail	r	Enum	<i>Enum_InpFail</i> error at input, fault	y or incorrectly connected sensor
			 0 no error 1 sensor break 2 faulty input polarity 4 input short circuit 	
			4 INPUT SNOTT CITCUIT	

BlueControl[®] engineering tool

This chapter describes how to handle the BlueControl[®] system assistant for rail line instruments.

12

Only the expert system assistant version is available.

The procedure described below is not necessary with the PROFIBUS-DP bus coupler RL DP, because the settings are made via the bus master parameter setting tool.

12.1 Defining the configuration

Before taking a field bus node into operation, the configuration must be defined. Enter order, function module type and device version.

The coupler module selected in **Device selection** is always set into position "0" automatically. This is the head station of the *rail line* system. All communication via the field bus is via this module. The following modules are called function modules.

- Select the function module type by means of double click on the module or by clicking on the function module and on button "Add entry" (1) in window "System configuration".
- 2 Define the exact device configuration
- Only versions with 24V and system interface are permissible.
 - Oetermine the order. The order can be changed by one position at a time using "Move entry up" (3) or "down" (4). Click on button "Remove entry" (2) to remove an entry.

Allocated buttons:

1 2 3 4

which can be called up via button "Help".

• On page "Parameter", the module settings for the behaviour in the system are adjustable.

 The data type describes the format of process data transmitted via the bus (integer / floating point).

The process data are determined when setting the parameters of the individual modules.

 The group parameter determines which values are output by the modules in case of bus transmission failure between external master (PLC) and bus coupler. (see chapter xxxx)

Fig. 30: System configuration view of the function modules

Fig. 31: Configuration of device behaviour

Syste	m configuration Parameter			
No.	Module type	Datentyp	Gruppenparameter	_
1	CI45-115-21000-000	Float	Fehlerverh.: zero	
2	TB45-113-23000-000	Integer	Fehlerverh.: last value	
3	KS45-113-22000-000	Float	Fehlerverh.: last value	

- Assign addresses 1 to n (via front panel keys or engineering tool) to the function modules in mounting order starting at the coupler).
- 6 The defined configuration is sent to the bus coupler via the front-panel interface, and stored.

Unless the defined configuration corresponds to the actually provided function modules, an error is output.

Fig. 32: Error display

Error message explanation:

Error	Description	Causes
ОК	Everything ok	
Coupler (01)	Communication error	Module not fittedModule failedError on system bus
Coupler (02)	Deviation from defined configuration	• Defined configuration does not correspond to the fitted module.
Module (01)	A sensor alarm was output	Sensor break detectedShort circuit or wrong polarity detected
Module (02)	A limit value was exceeded	Limit value exceededHeating current alarm generated
Module (04)	Device-specific information	 Device error occurred Maintenance manager signal (operating hours, number of switching cycles)
Module(08)	Write value out of limits	Setpoint out of adjusted limitsValue out of permissible limits

The error code digits are in HEX format.

Error messages can be generated also in combination.

Examples:

- Module (03) = exceeded limit value + sensor alarm
- Coupler (03) = communication error + configuration divergence;

cause e.g. faulty module address

• Module (OE) = exceeded write value + device error + limit value exceeded.

Reset of error messages can be displayed also only after a second read operation.

12.2 Comparison with actual configuration

When loading the engineering from the field bus coupler, the defined configuration is read. Unless error "coupler (xx)" is displayed, the defined configuration corresponds to the actual configuration.

12.3 Viewing the process data on the bus coupler

On on-line connection to the bus coupler is built up via button "Connection to device". The following information per configured function module is provided:

- 2 Error status (see below)
- Read process data, values read by the module (defined in the module engineering)
- Written process data, data written by the bus coupler (defined in the module engineering)

Status information structure:

D7 D6 D5 D4 D3 D2 D1 D0

Fig.	33:	Overview	of process	data
------	-----	----------	------------	------

Description	Value
Cl 45 rail line [1]	
Status	0000 0000
Read 1	30.01
Write 1	
TB 45 rail line [2]	150
Status	0000 0000
Read 1	257
Write 1	
KS 45 rail line [3]	100
Status	0000 0000
Read 1	2515
Read 2	-1000
Write 1	

Bit no.	Signification (with $Dx = 1$)	Cause	corresponds to error
DO	Sensor alarm generated	Sensor break detectedShort circuit or wrong polarity detected	Module (01)
D1	Limit value exceeded	Limit value exceededHeating current alarm generated	Module (02)
D2	Device-specific information	 Device error detected Maintenance manager signal (operating hours, number of switching cycles) 	Module (04)
D3	Write value out of limits	Setpoint out of the adjusted limitsValue out of the permissible limits	Module (08)
D4	Communication error	Module not fittedModule failedError on system bus	Coupler (01)
D5	Divergence from defined configuration	 Defined configuration does not correspond to actually inserted module. 	Coupler (02)
D6-D7	Reserved		

Write values can be defined during on-line mode, unless a field bus interface is connected.

12.4 Processing a function module engineering

Individual engineering

12.4.1

A device engineering can be transmitted into the function module in different modes:

- connection via the module front-panel interface
- connection via the bus coupler front-panel interface and further transmission via internal system bus

In the second case, the module is addressed as follows:

- Click on the selected module in the system assistant.
- Click on button "Parameter and configuration" or select menu "View Parameter".
- 3 Load the device engineering from the module, process it and restore it in the device.

When transmitting the information, "Front" must be defined in item "Device connection". The module index is entered automatically.

Fig. 35: Selecting the communication channel

ata source 🍬 🔿 Store data to de	vice	ОК
Sector Load data from	device	Cance
ettings		Help
Device connector	Front	
PC connector	COM1	-
Start bits	1	
Data bits	8	
Stop bits	1	
Parity	Even	
Bit rate	9600	
address	0	
Module index	3	
Additional diagnostic in	formation	

13 Index

Δ

А		N
Adress areas	42 - 49	N
Adress formats	42 - 49 5	P
Area definitions	42	∎ Po
	72	Pr
	00.00	Pr
BlueControl® via PROFIBUS-DPV1	32 - 33	Pr
Bus connectors	15 11	0
Bus protocol	21 - 24	0
	00	5
Cleaning	20	Sa
Commissioning	0 10 - 16	50
Composition of the adress tables	43	Sr Sr
	10	0ŀ
D Data format	01	
Data tormat	2 21	Si
Defining the configuration	50 - 51	
	00 01	
	10 14	т
Electrical connections	12 - 14	Tr
	32 - 34	Tr
F		U
Fail-safe	27	Us
- Last value	27	
- ZUIU Format	Ζ1	
- Float	42	V
- Float acc. to ieee	42	Ŵ
- Integer	42	
Freely selectable objects	23 - 24	
Н		
Hints for DP master set-up	34	
Hints for installation	10	
1		
- Internal data types	43	
М		
Naintonanaa	0	
Maximum equinment	0 19	
Modbus adresses	42 - 49	
Modules		
- A.1	22	
- A.2	22	
- B	23	
- 6 Mounting	24 11	
woulding	11	

N	
Network topology	5
Р	
Parameter channel Power plug Predefined objects Process data length	21 - 22 12 22 15
0	
Quick entry	35 - 41
S Safety hints Screening Spare parts Special values - Sensor fault - Undefined value Supply voltage - Bus coupler - Power supply module	7 - 8 14 8 42 42 42 42 12
T Transfer rate Transmission format	5, 15 42
U User parameter setting - DPV0-Master - DPV1-Master	25 - 29 25 - 28 29

V

Viring

20

Subject to alterations without notice Änderungen vorbehalten Sous réserve de toutes modifications © PMA Prozeß- und Maschinen-Automation GmbH P.O.B. 310 229, D-34058 Kassel, Germany Printed in Germany 9499-040-77111 (11/2005)